Preferred Language
Articles
/
bsj-2625
Solving Optimal Control Linear Systems by Using New Third kind Chebyshev Wavelets Operational Matrix of Derivative

In this paper, a new third kind Chebyshev wavelets operational matrix of derivative is presented, then the operational matrix of derivative is applied for solving optimal control problems using, third kind Chebyshev wavelets expansions. The proposed method consists of reducing the linear system of optimal control problem into a system of algebraic equations, by expanding the state variables, as a series in terms of third kind Chebyshev wavelets with unknown coefficients. Example to illustrate the effectiveness of the method has been presented.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
Siam Journal On Control And Optimization
Scopus (22)
Crossref (21)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Numerical Solution for Linear State Space Systems using Haar Wavelets Method

In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.

Scopus (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Dec 02 2021
Journal Name
Iraqi Journal Of Science
Approximate Solution for advection dispersion equation of time Fractional order by using the Chebyshev wavelets-Galerkin Method

The aim of this paper is adopted to give an approximate solution for advection dispersion equation of time fractional order derivative by using the Chebyshev wavelets-Galerkin Method . The Chebyshev wavelet and Galerkin method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are described based on the Caputo sense. Illustrative examples are included to demonstrate the validity and applicability of the proposed technique.

View Publication Preview PDF
Publication Date
Sun Jun 07 2015
Journal Name
Baghdad Science Journal
Direct method for Solving Nonlinear Variational Problems by Using Hermite Wavelets

In this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.

Crossref
View Publication Preview PDF
Publication Date
Sun Mar 02 2008
Journal Name
Baghdad Science Journal
Orthogonal Functions Solving Linear functional Differential EquationsUsing Chebyshev Polynomial

A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.

Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving System of Linear Fredholm Integral Equations of Second Kind Using Open Newton-Cotes Formulas

In this paper, the linear system of Fredholm integral equations is solving using Open Newton-Cotes formula, which we use five different types of Open Newton-Cotes formula to solve this system.  Compare the results of suggested method with the results of another method (closed Newton-Cotes formula)    Finally, at the end of each method, algorithms and programs developed and written in MATLAB (version 7.0) and we give some numerical examples, illustrate suggested method

View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Alexandria Engineering Journal
Crossref (5)
Crossref
View Publication
Publication Date
Thu Oct 01 2020
Journal Name
Alexandria Engineering Journal
Scopus (8)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Optimal Control Problem To Robust Nonlinear Descriptor control Systems with Matching Condition

Abstract

    In this paper, the solutions to class of robust non-linear semi-explicit descriptor control systems with matching condition via optimal control strategy are obtained. The optimal control strategy  has been introduced and  developed in the sense that, the optimal control  solution is robust solution to the given non-linear uncertain semi-explicit descriptor control system. The necessary mathematical proofs and remarks as well as  discussions are also proposed. The present approach is step-by-step illustrated by application example to show its effectiveness a and efficiency to compensate  the structure uncertainty in the given semi-explicit (descriptor) control

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF