Preferred Language
Articles
/
bsj-2625
Solving Optimal Control Linear Systems by Using New Third kind Chebyshev Wavelets Operational Matrix of Derivative

In this paper, a new third kind Chebyshev wavelets operational matrix of derivative is presented, then the operational matrix of derivative is applied for solving optimal control problems using, third kind Chebyshev wavelets expansions. The proposed method consists of reducing the linear system of optimal control problem into a system of algebraic equations, by expanding the state variables, as a series in terms of third kind Chebyshev wavelets with unknown coefficients. Example to illustrate the effectiveness of the method has been presented.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Optimal Control governing by Triple Linear Parabolic Boundary Value Problem

This paper deals with the continuous classical optimal control problem for triple partial differential equations of parabolic type with initial and boundary conditions; the Galerkin method is used to prove the existence and uniqueness theorem of the state vector solution for given continuous classical control vector. The proof of the existence theorem of a continuous classical optimal control vector associated with the triple linear partial differential equations of parabolic type is given. The derivation of the Fréchet derivative for the cost function is obtained. At the end, the theorem of the necessary conditions for optimality of this problem is stated and is proved.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
SIMULATION OF OPTIMAL SPEED CONTROL FOR A DC MOTOR USING LINEAR QUADRATIC REGULATOR (LQR)


This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.

Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
Mixed Implicit Galerkin – Frank Wolf, Gradient and Gradient Projection Methods for Solving Classical Optimal Control Problem Governed by Variable Coefficients, Linear Hyperbolic, Boundary Value Problem

This paper deals with testing a numerical solution for the discrete classical optimal control problem governed by a linear hyperbolic boundary value problem with variable coefficients. When the discrete classical control is fixed, the proof of the existence and uniqueness theorem for the discrete solution of the discrete weak form is achieved. The existence theorem for the discrete classical optimal control and the necessary conditions for optimality of the problem are proved under suitable assumptions. The discrete classical optimal control problem (DCOCP) is solved by using the mixed Galerkin finite element method to find the solution of the discrete weak form (discrete state). Also, it is used to find the solution for the discrete adj

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Solving Systems of Non-Linear Volterra Integral Equations by Combined Sumudu Transform-Adomian Decomposition Method

     This paper is used for solving component Volterra nonlinear systems by means of the combined Sumudu transform with Adomian decomposition process. We equate the numerical results with the exact solutions to demonstrate the high accuracy of the solution results. The results show that the approach is very straightforward and effective.

Scopus (6)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed May 31 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solutins of Systems for the Linear Fredholm-Volterra Integral Equations of the Second Kind

In this paper, we present some numerical methods for solving systems of linear FredholmVolterra integral equations of the second kind. These methods namely are the Repeated Trapezoidal Method (RTM) and the Repeated Simpson's 1/3 Method (RSM). Also some numerical examples are presented to show the efficiency and the accuracy of the presented work.  
 

View Publication Preview PDF
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Boundary Optimal Control Vector Governing by Triple Linear Partial Differential Equations of Parabolic Type

In this paper, the continuous classical boundary optimal control problem (CCBOCP) for triple linear partial differential equations of parabolic type (TLPDEPAR) with initial and boundary conditions (ICs & BCs) is studied. The Galerkin method (GM) is used to prove the existence and uniqueness theorem of the state vector solution (SVS) for given continuous classical boundary control vector (CCBCV). The proof of the existence theorem of a continuous classical boundary optimal control vector (CCBOCV) associated with the TLPDEPAR is proved. The derivation of the Fréchet derivative (FrD) for the cost function (CoF) is obtained. At the end, the theorem of the necessary conditions for optimality (NCsThOP) of this problem is stated and prov

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Oct 30 2018
Journal Name
Journal Of Engineering
Active Vibration Control of Cantilever Beam by Using Optimal LQR Controller

Many of mechanical systems are exposed to undesired vibrations, so designing an active vibration control (AVC) system is important in engineering decisions to reduce this vibration. Smart structure technology is used for vibration reduction. Therefore, the cantilever beam is embedded by a piezoelectric (PZT) as an actuator. The optimal LQR controller is designed that reduce the vibration of the smart beam by using a PZT element.  

In this study the main part is to change the length of the aluminum cantilever beam, so keep the control gains, the excitation, the actuation voltage, and mechanical properties of the aluminum beam for each length of the smart cantilever beam and observe the behavior and effec

... Show More
Crossref (6)
Crossref
View Publication Preview PDF
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
A Numerical Study for Solving the Systems of Fuzzy Fredholm Integral Equations of the Second Kind Using the Adomian Decomposition Method

     In this paper, the Adomian decomposition method (ADM) is successfully applied to find the approximate solutions for the system of fuzzy Fredholm integral equations (SFFIEs) and we also study the convergence of the technique. A consistent way to reduce the size of the computation is given to reach the exact solution. One of the best methods adopted to determine the behavior of the approximate solutions. Finally, the problems that have been addressed confirm the validity of the method  applied in this research using a comparison by combining numerical methods such as the Trapezoidal rule and Simpson rule with ADM.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Towards Solving Fractional Order Delay Variational Problems Using Euler Polynomial Operational Matrices

     In this paper, we introduce an approximate method for solving fractional order delay variational problems using fractional Euler polynomials operational matrices. For this purpose, the operational matrices of fractional integrals and derivatives are designed for Euler polynomials. Furthermore, the delay term in the considered functional is also decomposed in terms of the operational matrix of the fractional Euler polynomials. It is applied and substituted together with the other matrices of the fractional integral and derivative into the suggested functional. The main equations are then reduced to a system of algebraic equations. Therefore, the desired solution to the original variational problem is obtained by solving the resul

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Repeated Corrected Simpson's 3/8 Quadrature Method for Solving Fredholm Linear Integral Equations of the Second Kind

  In this paper, we use the repeated corrected Simpson's 3/8 quadrature method for obtaining the numerical solutions of Fredholm linear integral equations of the second kind. This method is more accurately than the repeated corrected Trapezoidal method and the repeated Simpson's 3/8 method. To illustrate the accuracy of this method, we give a numerical example

View Publication Preview PDF