Semiconductor laser is used in processing many issues related to the scientific, military, medical, industrial and agricultural fields due to its unique properties such as coherence and high strength where GaN-based components are the most efficient in this field. Current technological developments mention to the strong connection of GaN with sustainable electronic and optoelectronic devices which have high-efficiency. The threshold current density of Al0.1Ga0.9N/GaN triple quantum well laser structure was investigated to determine best values of the parameters affecting the threshold current density that are well width, average thickness of active region, cavity length, reflectivity of cavity mirrors and optical confinement factor. The optimum value of the threshold current density is 2670 A/cm2 was obtained when the well width (w= 2.5 nm), reflectivity of cavity mirrors (R1=0.75, R2=0.9), cavity length (L=2mm), average thickness of active region (d= 11.5 nm), and optical confinement factor ( Γ= 0.034) at room temperature.
The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreBackground: Breast cancer is the most common malignancy affecting the Iraqi population and the leading cause of cancer related mortality among Iraqi women. It has been well documented that prognosis of patients depends largely upon the hormone receptor contents and HER-2 over expression of their neoplasm. Recent studies suggest that Triple Positive (TP) tumors, bearing the three markers, tend to exhibit a relatively favorable clinical behavior in which overtreatment is not recommended. Aim: To document the different frequencies of ER/PR/HER2 breast cancer molecular subtypes focusing on the Triple Positive pattern; correlating those with the corresponding clinico-pathological characteristics among a sample of Iraqi patients diagnosed with th
... Show MoreAn optical system including quantum dot cylindrical Fresnel lens (CFL) has been designed by using Zemax optical designing program. Quantum dot cylindrical Fresnel lens has a relatively small thickness compared to conventional lenses and high absorbance. It contains grooves in the form of parallel lines, and each groove represents an individual lens that works to change the path of light falling on it to a single focal line. (CFL) is characterized by its small focal length despite its large area and small thickness, due to the nature of its design that gives this feature, which is applied in many optical systems (imaging and non- imaging system). In this paper, the visual properties of the (CFL) were studied as it is one of the impor
... Show MoreThis work is a trial to ensure the absolute security in any quantum cryptography (QC) protocol via building an effective hardware for satisfying the single-photon must requirement by controlling the value of mean photon number. This was approximately achieved by building a driving circuit that provide very short pulses (≈ 10 ns) for laser diode -LD- with output power of (0.7-0.99mW) using the available electronic components in local markets. These short pulses enable getting faint laser pulses that were further attenuated to reach mean photon number equal to 0.08 or less.
Wellbore instability is a significant problem faced during drilling operations and causes loss of circulation, caving, stuck pipe, and well kick or blowout. These problems take extra time to treat and increase the Nonproductive Time (NPT). This paper aims to review the factors that influence the stability of wellbores and know the methods that have been reached to reduce them. Based on a current survey, the factors that affect the stability of the wellbore are far-field stress, rock mechanical properties, natural fractures, pore pressure, wellbore trajectory, drilling fluid chemicals, mobile formations, naturally over-pressured shale collapse, mud weight, temperature, and time. Also, the most suitable ways to reduce well
... Show MorePorosity and permeability are the most difficult properties to determine in subsurface reservoir characterization. The difficulty of estimating them arising from the fact that porosity and permeability may vary significantly over the reservoir volume, and can only be sampled at well location. Secondly, the porosity values are commonly evaluated from the well log data, which are usually available from most wells in the reservoir, but permeability values, which are generally determined from core analysis, are not usually available. The aim of this study is: First, to develop correlations between the core and the well log data which can be used to estimate permeability in uncored wells, these correlations enable to estimate reservoir permeabil
... Show MoreInfectious diseases pose a global challenge, necessitating an exploration of novel methodologies for diagnostics and treatments. Since the onset of the most recent pandemic, COVID-19, which was initially identified as a worldwide health crisis, numerous countries experienced profound disruptions in their healthcare systems. To combat the spread of the COVID-19 pandemic, governments across the globe have mobilized significant efforts and resources to develop treatments and vaccines. Researchers have put forth a multitude of approaches for COVID-19 detection, treatment protocols, and vaccine development, including groundbreaking mRNA technology, among others.
This matter represents not only a scientific endeavor but also an essenti
... Show MoreMaximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a ty
... Show More