Cognitive radio technology is used to improve spectrum efficiency by having the cognitive radios act as secondary users to access primary frequency bands when they are not currently being used. In general conditions, cognitive secondary users are mobile nodes powered by battery and consuming power is one of the most important problem that facing cognitive networks; therefore, the power consumption is considered as a main constraint. In this paper, we study the performance of cognitive radio networks considering the sensing parameters as well as power constraint. The power constraint is integrated into the objective function named power efficiency which is a combination of the main system parameters of the cognitive network. We prove the existence of optimal combination of parameters such that the power efficiency is maximized. Then we reformulate the objective function to incorporate the throughput. According to different constraints or degree of significance, we may put proper weight to each term so that we could obtain more preferable combination of parameters. Computer simulations have given the optimal solution curve for different weights. We can draw the conclusion that if we put more emphasis on power efficiency, the transmit power is a more critical parameter, however if throughput is more important, the effect of sensing time is significant.
Kurdistan power system is expanded along years ago. The electrical power is transmitted through long transmission lines. The main problem of transmission lines is active and reactive power losses. It is important to solve this issue, unless, the most of electrical energy will lost over transmission system. In this study, High Voltage Direct Current links/bipolar connection were connected in a power system to reduce the power losses. The 132kV, 50 Hz, 36 buses Kurdistan power system is used as a study case. The load flow analysis was implemented by using ETAP.16 program in which Newton-Raphson method for three cases. The results show that the losses are reduced after inserted HVDC links.
Today the NOMA has exponential growth in the use of Optical Visible Light Communication (OVLC) due to good features such as high spectral efficiency, low BER, and flexibility. Moreover, it creates a huge demand for electronic devices with high-speed processing and data rates, which leads to more FPGA power consumption. Therefore; it is a big challenge for scientists and researchers today to recover this problem by reducing the FPGA power and size of the devices. The subject matter of this article is producing an algorithm model to reduce the power consumption of (Field Programmable Gate Array) FPGA used in the design of the Non-Orthogonal Multiple Access (NOMA) techniques applied in (OVLC) systems combined with a blue laser. However, The po
... Show MoreIn this work, oral lesions belong to 17 patients, 7 males and 10 females. Their ages range between 15 and 45 years. Follow up was conducted after one day, 7 days, 14 days, one month, and finally 3 months postoperatively. The study lasted for 1.5 year. Surgical diode laser with wavelength of 810 ± 20 nm, with two power levels of 10 and 15 W were used in contact and in non-contact mode via optical fiber. The postoperative outcome revealed; greater haemostatic capability, dry, sealed wound and noticeable lack in pain sensation
This study aimed at examining the role played by the media outlets during the coverage
of the presidential election campaigns 2020 of the United States of America.
The analytical study used through a partial inventory of the research community
for almost three months from the announcement of the candidates’ names by
the major parties on August 13 to November 6، which is the official election day in
the U.S. National Public Radio Station (NPR) to achieve the objectives of the study.
The study reached a number of conclusions related to the contents، methods and
sources of media coverage of the election campaigns of the 2020 U.S. at the mentioned
station، where the researcher proposed a number of recommendations
A large amount of thermal energy is generated from burning hazardous chemical wastes, and the temperature of the flue gases in hazardous waste incinerators reaches up to (1200 °C). The flue gases are cooled to (40°C) and are treated before emission. This thermal energy can be utilized to produce electrical power by designing a system suitable for dangerous flue gases in the future depending on the results of much research about using a proto-type small steam power plant that uses safe fuel to study and develop the electricity generation process with water tube boiler which is manufactured experimentally with theoretical development for some of its parts which are inefficient in experimental work. The studied system gen
... Show MoreThe thermoelectric power as a function of temperature for the Iron-Manganese-Aluminum, Fe-Mn-Al, alloys for manganese concentrations 0.04, 0.06, 0.08, 0.10 and 0.20 have been investigated in the temperature range 300 K. to 500 K. these results showed that the thermoelectric power coefficient in hot probe measurements showed that the electrons are the majority charge carriers in these alloys.
A piezoelectric cantilever beam with a tip mass at its free end is a common energy harvester configuration. This article introduces a new principle of designing such a harvester that increases the generated power without changing the resonance frequency of the harvester: the attraction force between two permanent magnets is used to add stiffness to the system. This magnetic stiffening counters the effect of the tip mass on the efficient operation frequency. Five set-ups incorporating piezoelectric bimorph cantilevers of the same type in different mechanical configurations are compared theoretically and experimentally to investigate the feasibility of this principle: theoretical and experimental results show that magnetically stiffened harve
... Show MoreWith the increasing reliance on microgrids as flexible and sustainable solutions for energy distribution, securing decentralized electricity grids requires robust cybersecurity strategies tailored to microgrid-specific vulnerabilities. The research paper focuses on enhancing detection capabilities and response times in the face of coordinated cyber threats in microgrid systems by implementing advanced technologies, thereby supporting decentralized operations while maintaining robust system performance in the presence of attacks. It utilizes advanced power engineering techniques to strengthen cybersecurity in modern power grids. A real-world CPS testbed was utilized to simulate the smart grid environment and analyze the impact of cyberattack
... Show MoreThe chlorine concentration variation in Baghdad water networks was studied. The
chlorine data were collected from Mayoralty of Baghdad and Ministry of Environment
(MOE) for the networks for both sides of the city Karkh and Rasafa for (2008-2009). The
study of these data indicates that there are no systematic testing program .Classified GIS
maps showed that the areas far from the treatment plants have almost always low
chlorine concentration .This indicates that the problem of the low chlorine concentration
in the far areas is due to cracks of pipe along the conveyance path ,as expected. The area's
most frequently have low concentration are Al-sadir,Al-Kadhimya, and Al-Amiria . It
was found also that the chlorine c
Permeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.
This paper will try to develop the permeability predictive model for one of Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).
Histogram analysis, probability analysis and Log-Log plot of Reservoir Qua
... Show More