Preferred Language
Articles
/
shY5jIcBVTCNdQwCdVWk
Power Efficiency Maximization in Cognitive Radio Networks
...Show More Authors

Cognitive radio technology is used to improve spectrum efficiency by having the cognitive radios act as secondary users to access primary frequency bands when they are not currently being used. In general conditions, cognitive secondary users are mobile nodes powered by battery and consuming power is one of the most important problem that facing cognitive networks; therefore, the power consumption is considered as a main constraint. In this paper, we study the performance of cognitive radio networks considering the sensing parameters as well as power constraint. The power constraint is integrated into the objective function named power efficiency which is a combination of the main system parameters of the cognitive network. We prove the existence of optimal combination of parameters such that the power efficiency is maximized. Then we reformulate the objective function to incorporate the throughput. According to different constraints or degree of significance, we may put proper weight to each term so that we could obtain more preferable combination of parameters. Computer simulations have given the optimal solution curve for different weights. We can draw the conclusion that if we put more emphasis on power efficiency, the transmit power is a more critical parameter, however if throughput is more important, the effect of sensing time is significant.

Scopus Crossref
View Publication
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modeling and Control of Fuel Cell Using Artificial Neural Networks
...Show More Authors

This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Some K-Banhatti Polynomials of First Dominating David Derived Networks
...Show More Authors

Chemical compounds, characteristics, and molecular structures are inevitably connected. Topological indices are numerical values connected with chemical molecular graphs that contribute to understanding a chemical compounds physical qualities, chemical reactivity, and biological activity. In this study, we have obtained some topological properties of the first dominating David derived (DDD) networks and computed several K-Banhatti polynomials of the first type of DDD.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Dec 01 2002
Journal Name
Iraqi Journal Of Physics
THE THERMOELECTRLC POWER OF THE MAGNETLC Fe-Mn-Al COMPOUNDS
...Show More Authors

The thermoelectric power as a function of temperature for the Iron-Manganese-Aluminum, Fe-Mn-Al, alloys for manganese concentrations 0.04, 0.06, 0.08, 0.10 and 0.20 have been investigated in the temperature range 300 K. to 500 K. these results showed that the thermoelectric power coefficient in hot probe measurements showed that the electrons are the majority charge carriers in these alloys.

View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Facial Emotion Recognition from Videos Using Deep Convolutional Neural Networks
...Show More Authors

Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.

View Publication Preview PDF
Scopus (56)
Crossref (40)
Scopus Crossref
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
Simple 2D chaotic remapping scheme for securing optical communication networks
...Show More Authors

In this work, a simple and new method is proposed to simultaneously improve the physical layer security and the transmission performance of the optical orthogonal frequency division multiplexing system, by combining orthogonal frequency division multiplexing technique with chaotic theory principles. In the system, a 2-D chaotic map is employed. The introduced system replaces complex operations such as matrix multiplication with simple operations such as multiplexing and inverting. The system performance in terms of bit error rate (BER) and peak to average ratio (PAPR) is enhanced. The system is simulated using Optisystem15 with a MATLAB2016 and for different constellations. The simulation results showed that the  BE

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
Robustness Assessment of Regional GNSS Geodetic Networks for Precise Applications
...Show More Authors

Over the past few decades, the surveying fieldworks were usually carried out based on classical positioning methods for establishing horizontal and vertical geodetic networks. However, these conventional positioning techniques have many drawbacks such as time-consuming, too costly, and require massive effort. Thus, the Global Navigation Satellite System (GNSS) has been invented to fulfill the quickness, increase the accuracy, and overcome all the difficulties inherent in almost every surveying fieldwork. This research assesses the accuracy of local geodetic networks using different Global Navigation Satellite System (GNSS) techniques, such as Static, Precise Point Positioning, Post Processing Kinematic, Session method, a

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 18 2018
Journal Name
Journal Of Engineering And Applied Sciences
Performance Evaluation of Transport Protocols for Mobile Ad Hoc Networks
...Show More Authors

Mobile Ad hoc Networks (MANETs) is a wireless technology that plays an important role in several modern applications which include military, civil, health and real-time applications. Providing Quality of Service (QoS) for this application with network characterized by node mobility, infrastructure-less, limitation resource is a critical issue and takes greater attention. However, transport protocols effected influential on the performance of MANET application. This study provides an analysis and evaluation of the performance for TFRC, UDP and TCP transport protocols in MANET environment. In order to achieve high accuracy results, the three transport protocols are implemented and simulated with four different network topology which are 5, 10

... Show More
View Publication
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Optimized Zero and First Order Design of Micro Geodetic Networks
...Show More Authors

Precision is one of the main elements that control the quality of a geodetic network, which defines as the measure of the network efficiency in propagation of random errors. This research aims to solve ZOD and FOD problems for a geodetic network using Rosenbrock Method to optimize the geodetic networks by using MATLAB programming language, to find the optimal design of geodetic network with high precision. ZOD problem was applied to a case study network consists of 19 points and 58 designed distances with a priori deviation equal to 5mm, to determine the best points in the network to consider as control points. The results showed that P55 and P73 having the minimum ellipse of error and considered as control points. FOD problem was applie

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
2021 Ieee/cvf Conference On Computer Vision And Pattern Recognition Workshops (cvprw)
Alps: Adaptive Quantization of Deep Neural Networks with GeneraLized PositS
...Show More Authors

View Publication
Scopus (13)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Compression Index and Compression Ratio Prediction by Artificial Neural Networks
...Show More Authors

Information about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites

... Show More
View Publication Preview PDF