Preferred Language
Articles
/
qBf1-40BVTCNdQwCpCvl
HF Wave Propagation Prediction Based On Passive Oblique Ionosonde
...Show More Authors

High frequency (HF) communications have an important role in long distances wireless communications. This frequency band is more important than VHF and UHF, as HF frequencies can cut longer distance with a single hopping. It has a low operation cost because it offers over-the-horizon communications without repeaters, therefore it can be used as a backup for satellite communications in emergency conditions. One of the main problems in HF communications is the prediction of the propagation direction and the frequency of optimum transmission (FOT) that must be used at a certain time. This paper introduces a new technique based on Oblique Ionosonde Station (OIS) to overcome this problem with a low cost and an easier way. This technique uses the international shortwave radio stations and the global beacons as the OIS transmitter and a normal HF receiver as the OIS receiver to verify the direction of propagation and the FOT. In addition, the critical frequency for F2 layer (fof2) was estimated in this paper for Iraq experimentally. The proposed technique was tested practically, and FOT range between Baghdad and other remote stations was estimated successfully using a radio receiver from Kenwood model R 1000 with a long wire antenna as a passive OIS system receiver.

Scopus
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Prediction of consolidation due to dewatering by using MATLAB software
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The Prediction of COVID 19 Disease Using Feature Selection Techniques
...Show More Authors
Abstract<p>COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in </p> ... Show More
View Publication Preview PDF
Scopus (27)
Crossref (20)
Scopus Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Creep-Fatigue Interaction Damage for Polyamide 6,6 Composites
...Show More Authors

    This paper aims to study the damage generated due to creep-fatigue interaction behaviors in solid polyamide 6,6 and its composites that include 1%wt of carbon nanotubes or 30% wt short carbon fiber prepared by an injection technique. The investigation also includes studying the influence of applied temperatures higher than the glass transition temperatures on mechanical properties. The obtained results showed that the addition of reinforcement materials increased all the mechanical properties, while the increase in test temperature reduced all mechanical properties, especially for polyamide 6,6. The creep-fatigue interaction resistance also improved due to the addition of reinforcement materials by inc

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Ifip Advances In Information And Communication Technology
Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
...Show More Authors

Machine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials &amp; Continua
Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems
...Show More Authors

View Publication
Scopus (16)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Mon Mar 13 2017
Journal Name
Journal Of Baghdad College Of Dentistry
Computer Assisted Immunohistochemical Score Prediction Via Simplified Image Acquisition Technique
...Show More Authors

Background: techniques of image analysis have been used extensively to minimize interobserver variation of immunohistochemical scoring, yet; image acquisition procedures are often demanding, expensive and laborious. This study aims to assess the validity of image analysis to predict human observer’s score with a simplified image acquisition technique. Materials and methods: formalin fixed- paraffin embedded tissue sections for ameloblastomas and basal cell carcinomas were immunohistochemically stained with monoclonal antibodies to MMP-2 and MMP-9. The extent of antibody positivity was quantified using Imagej® based application on low power photomicrographs obtained with a conventional camera. Results of the software were employed

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Prediction of Biodegradability Possibility for Sewage of the Dairy Industry
...Show More Authors

he dairy industry is one of the industrial activities classified within the food industries in all phases of the dairy industry, which leads to an increase in the amount of wastewater discharged from this industry. The study was conducted in the Abu Ghraib dairy factory, classified as one of the central factories in Iraq, located in the west of Baghdad governorate, with a design capacity of 22,815 tons of dairy products. The characteristics of the liquid waste generated from the factory were determined for the following parameters biological oxygen demand (BOD5), Chemical oxygen demand (COD), total suspended solids (TSS), pH, nitrate, phosphate, chloride, and sulfate with an average value of (1079, 1945, 323, 9.2, 24, 2

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 24 2018
Journal Name
Civil Engineering Journal
Artificial Neural Network Model for the Prediction of Groundwater Quality
...Show More Authors

The present article delves into the examination of groundwater quality, based on WQI, for drinking purposes in Baghdad City. Further, for carrying out the investigation, the data was collected from the Ministry of Water Resources of Baghdad, which represents water samples drawn from 114 wells in Al-Karkh and Al-Rusafa sides of Baghdad city. With the aim of further determining WQI, four water parameters such as (i) pH, (ii) Chloride (Cl), (iii) Sulfate (SO4), and (iv) Total dissolved solids (TDS), were taken into consideration. According to the computed WQI, the distribution of the groundwater samples, with respect to their quality classes such as excellent, good, poor, very poor and unfit for human drinking purpose, was found to be

... Show More
View Publication
Crossref (30)
Clarivate Crossref
Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Compression Index and Compression Ratio Prediction by Artificial Neural Networks
...Show More Authors

Information about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites

... Show More
View Publication Preview PDF