Preferred Language
Articles
/
LRZ9b4cBVTCNdQwCgkpq
The Prediction of COVID 19 Disease Using Feature Selection Techniques
...Show More Authors
Abstract<p>COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in order to select the best features that affect the prediction of the proposed model. These are the Recursive Feature Elimination (RFE) as wrapper feature selection and the Extra Tree Classifier (ETC) as embedded feature selection. Two classification methods are applied for classifying the features vectors which include the Naïve Bayesian method and Restricted Boltzmann Machine (RBM) method. The results were 56.181%, 97.906% respectively when classifying all features and 66.329%, 99.924% respectively when classifying the best ten features using features selection techniques.</p>
Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
A Survey on Feature Selection Techniques using Evolutionary Algorithms
...Show More Authors

     Feature selection, a method of dimensionality reduction, is nothing but collecting a range of appropriate feature subsets from the total number of features. In this paper, a point by point explanation review about the feature selection in this segment preferred affairs and its appraisal techniques are discussed. I will initiate my conversation with a straightforward approach so that we consider taking care of features and preferred issues depending upon meta-heuristic strategy. These techniques help in obtaining the best highlight subsets. Thereafter, this paper discusses some system models that drive naturally from the environment are discussed and calculations are performed so that we can take care of the prefe

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Sequential feature selection for heart disease detection using random forest
...Show More Authors

Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Exploring Important Factors in Predicting Heart Disease Based on Ensemble- Extra Feature Selection Approach
...Show More Authors

Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Ifip Advances In Information And Communication Technology
Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
...Show More Authors

Machine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Image Feature Extraction and Selection
...Show More Authors

Features are the description of the image contents which could be corner, blob or edge. Scale-Invariant Feature Transform (SIFT) extraction and description patent algorithm used widely in computer vision, it is fragmented to four main stages. This paper introduces image feature extraction using SIFT and chooses the most descriptive features among them by blurring image using Gaussian function and implementing Otsu segmentation algorithm on image, then applying Scale-Invariant Feature Transform feature extraction algorithm on segmented portions. On the other hand the SIFT feature extraction algorithm preceded by gray image normalization and binary thresholding as another preprocessing step. SIFT is a strong algorithm and gives more accura

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Medical Image Classification for Coronavirus Disease (COVID-19) Using Convolutional Neural Networks
...Show More Authors

     The coronavirus is a family of viruses that cause different dangerous diseases that lead to death. Two types of this virus have been previously found: SARS-CoV, which causes a severe respiratory syndrome, and MERS-CoV, which causes a respiratory syndrome in the Middle East. The latest coronavirus, originated in the Chinese city of Wuhan, is known as the COVID-19 pandemic. It is a new kind of coronavirus that can harm people and was first discovered in Dec. 2019. According to the statistics of the World Health Organization (WHO), the number of people infected with this serious disease has reached more than seven million people from all over the world. In Iraq, the number of people infected has reached more than tw

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (7)
Scopus Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Gsc Advanced Research And Reviews
Review of Coronavirus disease- 2019 (COVID-19) in Iraq
...Show More Authors

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) or 2019 novel coronavirus (2019-nCoV) is quickly spreading to the rest of the world, from its origin in Wuhan, Hubei Province, China. And becoming a global pandemic that affects the world's most powerful countries. The goal of this review is to assist scientists, researchers, and others in responding to the current Coronavirus disease (covid-19) is a worldwide public health contingency state. This review discusses current evidence based on recently published studies which is related to the origin of the virus, epidemiology, transmission, diagnosis, treatment, and all studies in Iraq for the effect of covid-19 diseases, as well as provide a reference for future research

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Entropy-Based Feature Selection using Extra Tree Classifier for IoT Security
...Show More Authors

      The Internet of Things (IoT) is a network of devices used for interconnection and data transfer. There is a dramatic increase in IoT attacks due to the lack of security mechanisms. The security mechanisms can be enhanced through the analysis and classification of these attacks. The multi-class classification of IoT botnet attacks (IBA) applied here uses a high-dimensional data set. The high-dimensional data set is a challenge in the classification process due to the requirements of a high number of computational resources. Dimensionality reduction (DR) discards irrelevant information while retaining the imperative bits from this high-dimensional data set. The DR technique proposed here is a classifier-based fe

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun May 30 2021
Journal Name
Iraqi Journal Of Science
Analysis and Prediction of COVID-19 Outbreak by a Numerical Modelling
...Show More Authors

Pandemic COVID-19 is a contagious disease affecting more than 200 countries, territories, and regions. Recently, Iraq is one of the countries that have immensely suffered from this outbreak. The Kurdistan Region of Iraq (KRI) is also prone to the disease. Until now, more than 23,000 confirmed cases have been recorded in the region. Since the onset of the COVID-19 in Wuhan, based on epidemiological modelling, researchers have used various models to predict the future of the epidemic and the time of peak, yielding diverse numbers in different countries. This study aims to estimate the basic reproductive number [R0] for COVID-19 in KRI, using the standard SIR (Susceptible-Infected-Removed) epidemic model. A system of non

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref