COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in order to select the best features that affect the prediction of the proposed model. These are the Recursive Feature Elimination (RFE) as wrapper feature selection and the Extra Tree Classifier (ETC) as embedded feature selection. Two classification methods are applied for classifying the features vectors which include the Naïve Bayesian method and Restricted Boltzmann Machine (RBM) method. The results were 56.181%, 97.906% respectively when classifying all features and 66.329%, 99.924% respectively when classifying the best ten features using features selection techniques.
The first known use of the term conspiracy theory dated back to the nineteenth century. It is defined as a theory that explains an event or set of circumstances as the result of a secret plot by usually powerful conspirators. It is commonly used, but by no means limited to, extreme political groups. Since the emergence of COVID-19 as a global pandemic in December 2019, the conspiracy theory was present at all stages of the pandemic.
This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show MoreA substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreThe novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic of coronavirus disease 2019 (COVID-19) which represents a global public health crisis. Based on recent published studies, this review discusses current evidence related to the transmission, clinical characteristics, diagnosis, management and prevention of COVID-19. It is hoped that this review article will provide a benefit for the public to well understand and deal with this new virus, and give a reference for future researches.
Susceptibility to the pandemic coronavirus disease 2019 (COVID-19) has recently been associated with ABO blood groups in patients of different ethnicities. This study sought to understand the genetic association of this polymorphic system with risk of disease in Iraqi patients. Two outcomes of COVID-19, recovery and death, were also explored. ABO blood groups were determined in 300 hospitalized COVID-19 Iraqi patients (159 under therapy, 104 recovered, and 37 deceased) and 595 healthy blood donors. The detection kit for 2019 novel coronavirus (2019-nCoV) RNA (PCR-Fluorescence Probing) was used in the diagnosis of disease.
This research aims to investigate the approaches adopted by Iraqi newspapers in addressing the COVID-19 pandemic crisis. Employing a descriptive methodology and survey technique, the study conducts content analysis on articles published in three prominent newspapers: Al-Sabah, Al-Mada, and Tareeq Al-Shaab. A multi-stage sampling method was employed, encompassing 260 issues of the aforementioned newspapers. Data collection involved the use of a content analysis questionnaire, with the "How it was said?" method utilized to determine analysis categories.
The results showed that Al-Sabah newspaper adopted a positive approach in addressing COVID-19-related topics, while Al-Mada newspaper remained neutral, and Tare
Background: In December 2019, an episode of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARSCoV2) was reported in Wuhan, China and has spread around the world, increasing the number of contagions. Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) are common herpesviruses that can cause persistent latent infections and affect the developing immune system.The study was conducted to explore the prevalence and reactivation of CMV and EBV antibodies in COVID-19 patients group in comparison to healthy group and to investigate the association between the presence of these viruses with each of severity of disease and oral hygiene. Materials and Methods: Eighty Five subjects were participated in this case control study (5
... Show MoreText Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as t
... Show More