Preferred Language
Articles
/
qBf1-40BVTCNdQwCpCvl
HF Wave Propagation Prediction Based On Passive Oblique Ionosonde
...Show More Authors

High frequency (HF) communications have an important role in long distances wireless communications. This frequency band is more important than VHF and UHF, as HF frequencies can cut longer distance with a single hopping. It has a low operation cost because it offers over-the-horizon communications without repeaters, therefore it can be used as a backup for satellite communications in emergency conditions. One of the main problems in HF communications is the prediction of the propagation direction and the frequency of optimum transmission (FOT) that must be used at a certain time. This paper introduces a new technique based on Oblique Ionosonde Station (OIS) to overcome this problem with a low cost and an easier way. This technique uses the international shortwave radio stations and the global beacons as the OIS transmitter and a normal HF receiver as the OIS receiver to verify the direction of propagation and the FOT. In addition, the critical frequency for F2 layer (fof2) was estimated in this paper for Iraq experimentally. The proposed technique was tested practically, and FOT range between Baghdad and other remote stations was estimated successfully using a radio receiver from Kenwood model R 1000 with a long wire antenna as a passive OIS system receiver.

Scopus
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Food Science And Technology
Study on herbicide residues in soybean processing based on UPLC-MS/MS detection
...Show More Authors

View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Nov 02 2013
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Images Segmentation Based on Fast Otsu Method Implementing on Various Edge Detection Operators
...Show More Authors

Publication Date
Thu Apr 04 2024
Journal Name
Journal Of Electrical Systems
AI-Driven Prediction of Average Per Capita GDP: Exploring Linear and Nonlinear Statistical Techniques
...Show More Authors

Average per capita GDP income is an important economic indicator. Economists use this term to determine the amount of progress or decline in the country's economy. It is also used to determine the order of countries and compare them with each other. Average per capita GDP income was first studied using the Time Series (Box Jenkins method), and the second is linear and non-linear regression; these methods are the most important and most commonly used statistical methods for forecasting because they are flexible and accurate in practice. The comparison is made to determine the best method between the two methods mentioned above using specific statistical criteria. The research found that the best approach is to build a model for predi

... Show More
View Publication
Crossref
Publication Date
Fri Jan 25 2019
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics Vol
Predicate the Ability of Extracorporeal Shock Wave Lithotripsy (ESWL) to treat the Kidney Stones by used Combined Classifier
...Show More Authors

Extracorporeal Shock Wave Lithotripsy (ESWL) is the most commonplace remedy for kidney stone. Shock waves from outside the body frame are centered at a kidney stone inflicting the stone to fragment. The success of the (ESWL) treatment is based on some variables such as age, sex, stone quantity stone period and so on. Thus, the prediction the success of remedy by this method is so important for professionals to make a decision to continue using (ESWL) or tousing another remedy technique. In this study, a prediction system for (ESWL) treatment by used three techniques of mixing classifiers, which is Product Rule (PR), Neural Network (NN) and the proposed classifier called Nested Combined Classi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 02 2013
Journal Name
Baghdad Science Journal
Some Probability Characteristics Functions of the Solution of Stochastic Fredholm Integral Equation Contains a Known Sine Wave Function
...Show More Authors

Abstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function

View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Ground state properties of Beryllium isotopes using the radial wave functions of harmonic-oscillator and modified Bessel functions
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Sep 28 2024
Journal Name
Journal Of The Pakistan Medical Association
Investigating the correlation of the second derivative of digital pulse wave (DPW) with QT variability index in women
...Show More Authors

Objective: To determine the correlation between the second derivative of digital pulse wave and the QT variability index. Method: The cross-sectional study was conducted from October 2021 to May 2022 at the Department of Physiology, College of Medicine, University of Mustansiriyah, Baghdad, Iraq, and comprised healthy women. Samples were raised by simple random technique. Digital pulse waves were captured using a fingertip pulse wave transducer. Lab Chart Pro version 7.2 was used to automatically detect and quantify the amplitude of A, B, C, D and E waves expressed by the second derivative. QT interval of each beat was recorded by electrocardiogram, and was calculated automatically via Lab chart Pro version 7.2 without averaging. D

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The Prediction of COVID 19 Disease Using Feature Selection Techniques
...Show More Authors
Abstract<p>COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in </p> ... Show More
View Publication Preview PDF
Scopus (31)
Crossref (24)
Scopus Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Analyzing the behavior of different classification algorithms in diabetes prediction
...Show More Authors

<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c

... Show More
View Publication
Scopus (1)
Scopus Crossref