Recently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
The aim of this paper is to present a new methodology to find the private key of RSA. A new initial value which is generated from a new equation is selected to speed up the process. In fact, after this value is found, brute force attack is chosen to discover the private key. In addition, for a proposed equation, the multiplier of Euler totient function to find both of the public key and the private key is assigned as 1. Then, it implies that an equation that estimates a new initial value is suitable for the small multiplier. The experimental results show that if all prime factors of the modulus are assigned larger than 3 and the multiplier is 1, the distance between an initial value and the private key
... Show MoreThe objective of this paper is, first, study a new collection of sets such as field and we discuss the properties of this collection. Second, introduce a new concepts related to the field such as measure on field, outer measure on field and we obtain some important results deals with these concepts. Third, introduce the concept of null-additive on field as a generalization of the concept of measure on field. Furthermore, we establish new concept related to - field noted by weakly null-additive on field as a generalizations of the concepts of measure on and null-additive. Finally, we introduce the restriction of a set function on field and many of its properties and characterizations are given.
The main purpose of the work is to analyse studies of themagnetohydrodynamic “MHD” flow for a fluid of generalized Burgers’ “GB” within an annular pipe submitted under impulsive pressure “IP” gradient. Closed form expressions for the velocity profile, impulsive pressure gradient have been taken by performing the finite Hankel transform “FHT” and Laplace transform “LT” of the successive fraction derivatives. As a result, many figures are planned to exhibit the effects of (different fractional parameters “DFP”, relaxation and retardation times, material parameter for the Burger’s fluid) on the profile of velocity of flows. Furthermore, these figures are compa
The main purpose of this paper is to define generalized Γ-n-derivation, study and investigate some results of generalized Γ-n-derivation on prime Γ-near-ring G and
The present study aimed at shed light on the association between HLA-class I antigens (A, B and Cw) and brain tumours (meningioma and glioma) in the basis of their individual frequencies or two-locus association A total of 52 brain tumour patients were enrolled in this study, with an age range of 7-68 years. The patients were divided into two clinical groups; meningioma (20 cases) and glioma (22 cases), while the remaining 10 cases represented other types of brain tumour. Control samples included 47 Iraqi Arab apparently healthy blood volunteers, with an age range of 15-50 year. Three HLA antigens showed a significant increased frequency in total patients as compared to controls. They were B13 (34.6 vs. 6.5%), B40 (15.4 vs. 2.2%) and Cw3
... Show MoreIn this paper, the concept of soft closed groups is presented using the soft ideal pre-generalized open and soft pre-open, which are -ᶅ- - -closed sets " -closed", Which illustrating several characteristics of these groups. We also use some games and - Separation Axiom, such as (Ʈ0, Ӽ, ᶅ) that use many tables and charts to illustrate this. Also, we put some proposals to study the relationship between these games and give some examples.
In this paper generalized spline method is used for solving linear system of fractional integro-differential equation approximately. The suggested method reduces the system to system of linear algebraic equations. Different orders of fractional derivative for test example is given in this paper to show the accuracy and applicability of the presented method.
Compaction curves are widely used in civil engineering especially for road constructions, embankments, etc. Obtaining the precise amount of Optimum Moisture Content (OMC) that gives the Maximum Dry Unit weight gdmax. is very important, where the desired soil strength can be achieved in addition to economic aspects.
In this paper, three peak functions were used to obtain the OMC and gdmax. through curve fitting for the values obtained from Standard Proctor Test. Another surface fitting was also used to model the Ohio’s compaction curves that represent the very large variation of compacted soil types.
The results showed very good correlation between the values obtained from some publ
... Show More