Recently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
In this paper, we introduce a type of modules, namely S-K-nonsingular modules, which is a generalization of K-nonsingular modules. A comprehensive study of these classes of modules is given.
A submodule N of a module M is said to be s-essential if it has nonzero intersection with any nonzero small submodule in M. In this article, we introduce and study a class of modules in which all its nonzero endomorphisms have non-s-essential kernels, named, strongly -nonsigular. We investigate some properties of strongly -nonsigular modules. Direct summand, direct sums and some connections of such modules are discussed.
In this article, performing and deriving the probability density function for Rayleigh distribution by using maximum likelihood estimator method and moment estimator method, then crating the crisp survival function and crisp hazard function to find the interval estimation for scale parameter by using a linear trapezoidal membership function. A new proposed procedure used to find the fuzzy numbers for the parameter by utilizing ( to find a fuzzy numbers for scale parameter of Rayleigh distribution. applying two algorithms by using ranking functions to make the fuzzy numbers as crisp numbers. Then computed the survival functions and hazard functions by utilizing the real data application.
This work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
Copulas are very efficient functions in the field of statistics and specially in statistical inference. They are fundamental tools in the study of dependence structures and deriving their properties. These reasons motivated us to examine and show various types of copula functions and their families. Also, we separately explain each method that is used to construct each copula in detail with different examples. There are various outcomes that show the copulas and their densities with respect to the joint distribution functions. The aim is to make copulas available to new researchers and readers who are interested in the modern phenomenon of statistical inferences.
The main purpose of this paper, is to introduce a topological space , which is induced by reflexive graph and tolerance graph , such that may be infinite. Furthermore, we offered some properties of such as connectedness, compactness, Lindelöf and separate properties. We also study the concept of approximation spaces and get the sufficient and necessary condition that topological space is approximation spaces.
The topic of modulus of smoothness still gets the interest of many researchers due to its applicable usage in different fields, especially for function approximation. In this paper, we define a new modulus of smoothness of weighted type. The properties of our modulus are studied. These properties can be easily used in different fields, in particular, the functions in the Besov spaces when
Single crystals of pure and Cu+2,Fe+2 doped potassium sulfate were grown from aqueous solutions by the slow evaporation technique at room temperature. with dimension of (11x9 x4)mm3 and ( 10x 8x 5)mm3 for crystal doping with Cu &Fe respectively. The influence of doping on crystal growth and its structure revealed a change in their lattice parameters(a=7.479 Ã… ,b=10.079 Ã… ,c=5.772 Ã…)for pure and doping (a=9.687 Ã…, b=14.926 Ã… ,c= 9.125 Ã…) & (a=9.638 Ã… , b= 8.045 Ã… ,c=3.271 Ã…) for Cu & Fe respectively. Structure analysis of the grown crystals were obtained by X-Ray powder diffraction measurements. The diffraction patterns were analyzed by the Rietveld refinement method. Rietveld refinement plo
... Show More