Inˑthis work, we introduce the algebraic structure of semigroup with KU-algebra is called KU-semigroup and then we investigate some basic properties of this structure. We define the KU-semigroup and several examples are presented. Also,we study some types of ideals in this concept such as S-ideal,k- ideal and P-ideal.The relations between these types of ideals are discussed and few results for product S-ideals of product KU-semigroups are given. Furthermore, few results of some ideals in KU-semigroup under homomorphism are discussed.
In this paper, we introduce the concepts of positive implicative [resp. implicative and commutative] Γ-KU-algebras, and obtain their some properties (including characterizations) respectively and some relationships among them. Next, we propose the notions of positive implicative [resp. implicative and commutative] Γ-ideals of a Γ-KU-algebra, and deal with their some properties (including characterizations) respectively and some relationships among them. Finally, we define a topological Γ-KU-algebra and discuss its various topological structures.
In this paper the full stable Banach gamma-algebra modules, fully stable Banach gamma-algebra modules relative to ideal are introduced. Some properties and characterizations of these classes of full stability are studied.
It is known that, the concept of hyper KU-algebras is a generalization of KU-algebras. In this paper, we define cubic (strong, weak,s-weak) hyper KU-ideals of hyper KU-algebras and related properties are investigated.
Let R be a Г-ring, and σ, τ be two automorphisms of R. An additive mapping d from a Γ-ring R into itself is called a (σ,τ)-derivation on R if d(aαb) = d(a)α σ(b) + τ(a)αd(b), holds for all a,b ∈R and α∈Γ. d is called strong commutativity preserving (SCP) on R if [d(a), d(b)]α = [a,b]α(σ,τ) holds for all a,b∈R and α∈Γ. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ,τ)-derivation d satisfied some properties, when R is prime and semi prime Г-ring.
This paper investigates the concept (α, β) derivation on semiring and extend a few results of this map on prime semiring. We establish the commutativity of prime semiring and investigate when (α, β) derivation becomes zero.
Profound maternal hemodynamic changes occur in order to satisfy the demands of a growing foetus. Early in pregnancy, peripheral vascular resistance (PVR) lowers, generating a considerable rise in cardiac output. Many parameters are employed for measuring the LV systolic function with different echocardiographic modalities including: M-Mode echocardiography, two-dimensional echocardiography, three-dimensional echocardiography, tissue doppler imaging.
In this paper, the concept of a neutrosophic KU-algebra is introduced and some related properties are investigated. Also, neutrosophic KU-ideals of a neutrosophic KU-algebra are studied and a few properties are obtained. Furthermore, a few results of neutrosophic KU-ideals of a neutrosophic KU-algebra under homomorphism are discussed
In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.