Preferred Language
Articles
/
oRcKNo8BVTCNdQwCxWI0
Association rules mining using cuckoo search algorithm
...Show More Authors

Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 25 2024
Journal Name
World Academy Of Sciences Journal
Expression of programmed death ligand 1 in patients with triple‑negative breast cancer: Association with clinicopathological parameters
...Show More Authors

The utilization of targeted therapy for programmed death ligand 1 (PD‑L1) has emerged as a prominent focus in contemporary clinical trials, particularly in the context of immune checkpoint inhibitors. The prognostic significance of the expression of PD‑L1 in invasive mammary cancer remains a subject of discussion in clinical oncology, requiring further exploration, despite its recognition as a biomarker for responsiveness to anti‑PDL1 immunotherapy. The present study was conducted to investigate the immunohistological expression of PD‑L1 in women with triple‑negative breast cancer (TNBC), with a particular focus for searching for the associated clinical and pathological characteristics. The present retrospective study examined the

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Sep 11 2020
Journal Name
Egyptian Journal Of Medical Human Genetics
Evaluating of the association between ABO blood groups and coronavirus disease 2019 (COVID-19) in Iraqi patients
...Show More Authors
Abstract<sec> <title>Background

Susceptibility to the pandemic coronavirus disease 2019 (COVID-19) has recently been associated with ABO blood groups in patients of different ethnicities. This study sought to understand the genetic association of this polymorphic system with risk of disease in Iraqi patients. Two outcomes of COVID-19, recovery and death, were also explored. ABO blood groups were determined in 300 hospitalized COVID-19 Iraqi patients (159 under therapy, 104 recovered, and 37 deceased) and 595 healthy blood donors. The detection kit for 2019 novel coronavirus (2019-nCoV) RNA (PCR-Fluorescence Probing) was used in the diagnosis of disease.

< ... Show More
View Publication
Scopus (27)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Thu Jan 23 2020
Journal Name
Oncology Letters
Overexpression of HURP mRNA in head and neck carcinoma and association with in�vitro response to vinorelbine
...Show More Authors

View Publication
Scopus (8)
Scopus Clarivate Crossref
Publication Date
Fri Dec 14 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Association of Phantom Vibration and Ringing Syndrome and Job-Related Stress among Nurses in Al-Nasiriyah City
...Show More Authors

Objectives: The study aims to: (1) assess the prevalence of phantom vibration and ringing syndrome among
nurses, (2) determine the level of job-related stress among those nurses who are working at teaching hospitals in
Al- Nasiriyah city, and (3) identify the association between job-related stress and experience of phantom
vibration and ringing syndrome.
Methodology: : A descriptive design, cross-sectional study was used for the present study was carried out
from 4th December, 2017 to the 4th April, 2018 in order to determine the association of Phantom
Vibration and Ringing Syndrome with Job - Related Stress among nurses at Teaching Hospitals in AlNasiriyah
City , on a purposive (non-probability) sample was used in t

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
A Cognitive Hybrid Tuning Control Algorithm Design for Nonlinear Path-Tracking Controller for Wheeled Mobile Robot
...Show More Authors

Abstract

This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Modeling and analysis of thermal contrast based on LST algorithm for Baghdad city
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A missing data imputation method based on salp swarm algorithm for diabetes disease
...Show More Authors

Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B

... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
A Pseudo-Random Number Generator Based on New Hybrid LFSR and LCG Algorithm
...Show More Authors

      In many areas, such as simulation, numerical analysis, computer programming, decision-making, entertainment, and coding, a random number input is required. The pseudo-random number uses its seed value. In this paper, a hybrid method for pseudo number generation is proposed using Linear Feedback Shift Registers (LFSR) and Linear Congruential Generator (LCG). The hybrid method for generating keys is proposed by merging technologies. In each method, a new large in key-space group of numbers were generated separately. Also, a higher level of secrecy is gained such that the internal numbers generated from LFSR are combined with LCG (The adoption of roots in non-linear iteration loops). LCG and LFSR are linear structures and outputs

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
One Algorithm to Cipher Messages in Columnar and Fixed Period-d Transposition Cipher
...Show More Authors

    One of ciphering systems depends on transposition of letters in plain text to generate cipher text. The programming of transposition depends mainly on 2-dimension matrix in either methods but the difference is in columnar .We print columns in the matrix according to their numbers in key but in the fixed, the cipher text will be obtained by printing matrix by rows.

View Publication Preview PDF
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
An Adaptive Multi-Objective Particle Swarm Optimization Algorithm for Multi-Robot Path Planning
...Show More Authors

This paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord

... Show More
View Publication Preview PDF