Preferred Language
Articles
/
NBdKPo8BVTCNdQwCcWVJ
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures and values of learning parameters are determined through cross-validation, and test datasets unseen in the cross-validation are used to evaluate the performance of the DMLP trained using the three-stage learning algorithm. Experimental results show that the proposed method is effective in combating overfitting in training deep neural networks.

Crossref
View Publication
Publication Date
Thu Dec 01 2011
Journal Name
Iraqi Journal Of Physics
Multilayer Perceptron for analyzing satellite data

Different ANN architectures of MLP have been trained by BP and used to analyze Landsat TM images. Two different approaches have been applied for training: an ordinary approach (for one hidden layer M-H1-L & two hidden layers M-H1-H2-L) and one-against-all strategy (for one hidden layer (M-H1-1)xL, & two hidden layers (M-H1-H2-1)xL). Classification accuracy up to 90% has been achieved using one-against-all strategy with two hidden layers architecture. The performance of one-against-all approach is slightly better than the ordinary approach

View Publication Preview PDF
Publication Date
Thu Sep 01 2016
Journal Name
2016 8th Computer Science And Electronic Engineering (ceec)
Class-specific pre-trained sparse autoencoders for learning effective features for document classification

View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jan 09 2023
Journal Name
2023 15th International Conference On Developments In Esystems Engineering (dese)
Deep Learning-Based Speech Enhancement Algorithm Using Charlier Transform

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Efficient Hybrid DCT-Wiener Algorithm Based Deep Learning Approach For Semantic Shape Segmentation

    Semantic segmentation is effective in numerous object classification tasks such as autonomous vehicles and scene understanding. With the advent in the deep learning domain, lots of efforts are seen in applying deep learning algorithms for semantic segmentation. Most of the algorithms gain the required accuracy while compromising on their storage and computational requirements. The work showcases the implementation of Convolutional Neural Network (CNN) using Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy compaction properties. The proposed Adaptive Weight Wiener Filter (AWWF) rearranges the DCT coefficients by truncating the high frequency coefficients. AWWF-DCT model reinstate the convolutional l

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Gait Recognition Based on Deep Learning

      In current generation of technology, a robust security system is required based on biometric trait such as human gait, which is a smooth biometric feature to understand humans via their taking walks pattern. In this paper, a person is recognized based on his gait's style that is captured from a video motion previously recorded with a digital camera. The video package is handled via more than one phase after splitting it into a successive image (called frames), which are passes through a preprocessing step earlier than classification procedure operation. The pre-processing steps encompass converting each image into a gray image, cast off all undesirable components and ridding it from noise, discover differen

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Classification of brain tumors using the multilayer perceptron artificial neural network

Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Telecom Churn Prediction based on Deep Learning Approach

      The transition of customers from one telecom operator to another has a direct impact on the company's growth and revenue. Traditional classification algorithms fail to predict churn effectively. This research introduces a deep learning model for predicting customers planning to leave to another operator. The model works on a high-dimensional large-scale data set. The performance of the model was measured against other classification algorithms, such as Gaussian NB, Random Forrest, and Decision Tree in predicting churn. The evaluation was performed based on accuracy, precision, recall, F-measure, Area Under Curve (AUC), and Receiver Operating Characteristic (ROC) Curve. The proposed deep learning model performs better than othe

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
Deep Learning and Machine Learning via a Genetic Algorithm to Classify Breast Cancer DNA Data

       This paper uses Artificial Intelligence (AI) based algorithm analysis to classify breast cancer Deoxyribonucleic (DNA). Main idea is to focus on application of machine and deep learning techniques. Furthermore, a genetic algorithm is used to diagnose gene expression to reduce the number of misclassified cancers. After patients' genetic data are entered, processing operations that require filling the missing values using different techniques are used. The best data for the classification process are chosen by combining each technique using the genetic algorithm and comparing them  in terms of accuracy.

View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Facial Expression Recognition Based on Deep Learning: An Overview

      Recognizing facial expressions and emotions is a basic skill that is learned at an early age and it is important for human social interaction. Facial expressions are one of the most powerful natural and immediate means that humans use to express their feelings and intentions. Therefore, automatic emotion recognition based on facial expressions become an interesting area in research, which had been introduced and applied in many areas such as security, safety health, and human machine interface (HMI). Facial expression recognition transition from controlled environmental conditions and their improvement and succession of recent deep learning approaches from different areas made facial expression representation mostly based on u

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref