Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.
A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreThe rise of edge-cloud continuum computing is a result of the growing significance of edge computing, which has become a complementary or substitute option for traditional cloud services. The convergence of networking and computers presents a notable challenge due to their distinct historical development. Task scheduling is a major challenge in the context of edge-cloud continuum computing. The selection of the execution location of tasks, is crucial in meeting the quality-of-service (QoS) requirements of applications. An efficient scheduling strategy for distributing workloads among virtual machines in the edge-cloud continuum data center is mandatory to ensure the fulfilment of QoS requirements for both customer and service provider. E
... Show MoreThe problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.
In this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
Abstract
The research aims to examine the relationship between psychological flow, psychological well-being, and self-management among a sample of fine artists in the Makkah region and its governorates. The research also aims to examine the mean group differences in psychological flow, psychological well-being, and self-management due to demographic variables (sex and years of practicing arts). The sample consists of (110) male and female fine artists. The descriptive correlational approach was performed to collect the data by using the psychological flow scale developed by Payne et al (2011), which was translated by the researcher, the Oxford happiness questionnaire developed by Hills and Argyle (2002), it has t
... Show Moreinsulin-like Growth Factor 1 (IGF-1) gene has been described in several studies as a candidate gene for growth. The present study attempts to identify associations between body weight traits and polymorphisms at 279 position of 5'UTR flanking region of IGF-1 gene in broiler chickens. Three hundred broiler chickens from two breeds (Cobb 500 and Hubbard F-15) were used in this study. A single nucleotide polymorphism (SNP) at 279 position of 5'UTR region of the IGF-1 gene was identified in 20.6 and 60.3% of Cobb 500 and Hubbard F-15, respectively, using the PCR-RFLP technique. Allele frequencies were 83.87 and 42.80% for the T allele and 16.13 and 57.20% for the C allele in Cobb500 and Hubbard-15 breeds, respectively. Genotype frequencies were
... Show Moret. The current study was conducted on the umbilical cord blood of newborns in the Banks Hospital in Baghdad, Diyala, and Khalis in Diyala, where the study included 90 samples of blood, and samples were collected for the period from the 1st of October;2020 to The first of February;2021 AD, where the study included measuring levels of interleukin-6;Adiponectin,glucose and bilirubin in the blood, comparison study between the study variables with the child's weight (greater than 3 kg),(less or equal 3 kg),the mother's age (greater than 25 years, less or equal to 25 years),the sex of the child (male, female).The results of our study showed that there were no significant differences between the variables of the current study between the two sex
... Show MoreIn recent years, social media has been increasing widely and obviously as a media for users expressing their emotions and feelings through thousands of posts and comments related to tourism companies. As a consequence, it became difficult for tourists to read all the comments to determine whether these opinions are positive or negative to assess the success of a tourism company. In this paper, a modest model is proposed to assess e-tourism companies using Iraqi dialect reviews collected from Facebook. The reviews are analyzed using text mining techniques for sentiment classification. The generated sentiment words are classified into positive, negative and neutral comments by utilizing Rough Set Theory, Naïve Bayes and K-Nearest Neighbor
... Show More