Coronavirus disease 2019 (COVID-19) is a flu-like infection caused by a novel virus known as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). After the widespread around the world, it was announced by the World Health Organization (WHO) as a global pandemic. The symptoms of COVID-19 may arise within 2 weeks and the severity ranged from mild with signs of respiratory infection to severe cases of organ failure and even death. Management of COVID-19 patients includes supportive treatment and pharmacological medications expected to be effective with no definitive cure of the disease. The aims of this study are highlighting the management protocol and supportive therapy especially vitamin D and manifesting the clinical symptoms b
... Show MoreThe techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of
... Show MoreIn this research، a comparison has been made between the robust estimators of (M) for the Cubic Smoothing Splines technique، to avoid the problem of abnormality in data or contamination of error، and the traditional estimation method of Cubic Smoothing Splines technique by using two criteria of differentiation which are (MADE، WASE) for different sample sizes and disparity levels to estimate the chronologically different coefficients functions for the balanced longitudinal data which are characterized by observations obtained through (n) from the independent subjects، each one of them is measured repeatedly by group of specific time points (m)،since the frequent measurements within the subjects are almost connected an
... Show MoreAbstract
The common types of movement disorders are ; dystonia which is a syndrome of repetitive muscle contractions. While , Huntington disease is autosomal dominant progressive neurodegenerative disorder, which is characterized by involuntary movements (“chorea”).
Tetrabenazine therapy has been shown to effectively control this movements compared with placebo.
Design the proper dosing approach for patients treated with tetrabenazine with genotype polymorphisms and their hepatic effect on patients.
A prospective case controlled study was carried on 50 patients whom divided into 2 groups :first group involved 25 patients who had cho
... Show MoreThe title compound, [Ru(C12H7Br2N2)2(CO)2], possesses a distorted octahedral environment about the Ru atom, with two cyclometallated 4,4′-dibromoazobenzene ligands and two mutually cis carbonyl ligands. The donor atoms are arranged such that the N atoms are mutually trans and the aryl C atoms are trans to carbonyl ligands.
The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreMassive multiple-input multiple-output (massive-MIMO) is a promising technology for next generation wireless communications systems due to its capability to increase the data rate and meet the enormous ongoing data traffic explosion. However, in non-reciprocal channels, such as those encountered in frequency division duplex (FDD) systems, channel state information (CSI) estimation using downlink (DL) training sequence is to date very challenging issue, especially when the channel exhibits a shorter coherence time. In particular, the availability of sufficiently accurate CSI at the base transceiver station (BTS) allows an efficient precoding design in the DL transmission to be achieved, and thus, reliable communication systems can be obtaine
... Show More