Let R be a ring with identity and let M be a left R-module. M is called µ-lifting modulei f for every sub module A of M, There exists a direct summand D of M such that M = D D', for some sub module D' of M such that A≤D and A D'<<µ D'. The aim of this paper is to introduce properties of µ-lifting modules. Especially, we give characterizations of µ-lifting modules. On the other hand, the notion of amply µ-supplemented iis studied as a generalization of amply supplemented modules, we show that if M is amply µ-supplemented such that every µ-supplement sub module of M
... Show MoreOn Goldie lifting modules
Let R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.
Let M be a R-module, where R be a commutative ring with identity, In this paper, we defined a new kind of module namely ET-hollow lifting module, Let T be a submodule of M, M is called ET-hollow lifting module if for every sub-module H of M with
Let be an R-module, and let be a submodule of . A submodule is called -Small submodule () if for every submodule of such that implies that . In our work we give the definition of -coclosed submodule and -hollow-lifiting modules with many properties.
In this paper we introduce G-Rad-lifting module as aproper generalization of lifting module, some properties of this type of modules are investigated. We prove that if M is G-Rad- lifting and
, then
, and
are G-Rad- lifting, hence we Conclude the direct summand of G-Rad- lifting is also G-Rad- lifting. Also we prove that if M is a duo module with
and
are G- Rad- lifting then M is G-Rad- lifting.
In this paper, we formulate and study a new property, namely indeterminacy (neutrosophic) of the hollow module. We mean indeterminacy hollow module is neutrosophic hollow module B (shortly Ne(B)) such that it is not possible to specify the conditions for satisfying it. Some concepts have been studied and introduced, for instance, the indeterminacy local module, indeterminacy divisible module, indeterminacy indecomposable module and indeterminacy hollow-lifting module. Also, we investigate that if Ne(B) is an indeterminacy divisible module with no indeterminacy zero divisors, then any indeterminacy submodule Ne(K) of Ne(B) is an indeterminacy hollow module. Further, we study the relationship between the indeterminacy of hollow an
... Show MoreA non-zero module M is called hollow, if every proper submodule of M is small. In this work we introduce a generalization of this type of modules; we call it prime hollow modules. Some main properties of this kind of modules are investigated and the relation between these modules with hollow modules and some other modules are studied, such as semihollow, amply supplemented and lifting modules.