Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy and the performance of the algorithms. The random forest algorithm was the most accurate method leading to lowest Root Mean Square Prediction Error (RMSPE) and highest Adjusted R-Square than multiple linear regression algorithm for both training and testing subset respectively. Thus, random Forest algorithm is more trustable in permeability prediction in non-cored intervals and its distribution in the geological model.
Inspite of the renovation and development that occurred on the
mathematics curricula and its teaching styles (methods), the teaching methods and the evaluation styles that the teachers of the country
follow are still traditionaL It depends on the normal distribution approach and the principle of individual differences among students in
addition the traditional tests that are used to evaluate student achievement are built on standard-referenced system. These types of tests focus on comparing the student's performance with his peers'
performance. The limitary of this type of evaluation in diagnosing the
students' acquisition of the stu
... Show MoreLet R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.
Deep Learning Techniques For Skull Stripping of Brain MR Images
General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreThis research deals with the frameworks and mechanisms of international press coverage of the issue of foreign interference in the formation of the Iraqi government in the Saudi newspapers Asharq Al-Awsat and Kayhan Al-Arabi Iran and how this topic was addressed in the two newspapers. The frameworks for international press coverage of external interference in the formation of the Iraqi government. ”This research is one of the descriptive research that adopted the survey method، which made it possible to use the content analysis tool to analyze
the content of the two newspapers، whose numbers are (624) from the
newspapers (Al-Sharq Al-Awsat Al-Saudi Arabia and Kayhan Al-Arabi Iran) from (1/1/2018 to 31/12/2018)، and the researc
Exploration activities of the oil and gas industry generate loads of formation water called produced water (PW) up to thousands of tons each day. Depending on the geographic area, formation depth, oil production techniques, and age of oil supply wells, PW from different oil fields contain different chemical compositions. Currently, PW is also known as industrial waste water containing heavy metals that are toxic to humans and the environment, requiring special processing so that they can be disposed of in the environment. To determine the heavy metals content in PW from the Al-Ahdab oil field (AOF), the Ministry of Science and Technology/Agricultural Research Department determined som
The aim of this study is interpretation well logs to determine Petrophysical properties of tertiary reservoir in Khabaz oil field using IP software (V.3.5). The study consisted of seven wells which distributed in Khabaz oilfield. Tertiary reservoir composed from mainly several reservoir units. These units are : Jeribe, Unit (A), Unit (A'), Unit (B), Unit (BE), Unit (E),the Unit (B) considers best reservoir unit because it has good Petrophysical properties (low water saturation and high porous media ) with high existence of hydrocarbon in this unit. Several well logging tools such as Neutron, Density, and Sonic log were used to identify total porosity, secondary porosity, and effective porosity in tertiary reservoir. For
... Show MoreThis research includes structure interpretation of the Yamama Formation (Lower Cretaceous) and the Naokelekan Formation (Jurassic) using 2D seismic reflection data of the Tuba oil field region, Basrah, southern Iraq. The two reflectors (Yamama and Naokelekan) were defined and picked as peak and tough depending on the 2D seismic reflection interpretation process, based on the synthetic seismogram and well log data. In order to obtain structural settings, these horizons were followed over all the regions. Two-way travel-time maps, depth maps, and velocity maps have been produced for top Yamama and top Naokelekan formations. The study concluded that certain longitudinal enclosures reflect anticlines in the east and west of the study ar
... Show More