Preferred Language
Articles
/
alkej-783
Performance Prediction in EDM Process for Al 6061 Alloy Using Response Surface Methodology and Genetic Algorithm

The Electric Discharge (EDM) method is a novel thermoelectric manufacturing technique in which materials are removed by a controlled spark erosion process between two electrodes immersed in a dielectric medium. Because of the difficulties of EDM, determining the optimum cutting parameters to improve cutting performance is extremely tough. As a result, optimizing operating parameters is a critical processing step, particularly for non-traditional machining process like EDM. Adequate selection of processing parameters for the EDM process does not provide ideal conditions, due to the unpredictable processing time required for a given function. Models of Multiple Regression and Genetic Algorithm are considered as effective methods for determining the optimal processing variables of Electrical Discharge Machining.

The material removal rate (MRR) and tool wear (Tw) were investigated using the process variables of pulse on time (Ton), pulse off time (Toff), and current intensity (Ip). The established empirical models were used to perform Genetic Algorithm (GA) to maximize (MRR) and minimize (Tw). The optimization results were utilized to establish machining conditions, validate empirical models, and obtain optimization outcomes. The optimal result that appears in this work was the pulse on (176.261 μs), pulse off (39.42 μs), and current intensity (23.62 Amp.) to maximize the MRR to (0.78391 g/min) and reduce tool wear to (0.0451 g/min).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Nov 29 2018
Journal Name
Al-khwarizmi Engineering Journal
Surface Roughness Prediction for Steel 304 In Edm Using Response Graph Modeling

Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on

... Show More
Crossref (1)
Crossref
View Publication
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Evaluating Electrocoagulation Process for Water Treatment Efficiency Using Response Surface Methodology

The electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 19 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Reaction Kinetic of Al- Doura Heavy Naphtha Reforming Process Using Genetic Algorithm

In this study, genetic algorithm was used to predict the reaction kinetics of Iraqi heavy naphtha catalytic reforming process located in Al-Doura refinery in Baghdad.  One-dimensional steady state model was derived to describe commercial catalytic reforming unit consisting of four catalytic reforming reactors in series process.

The experimental information (Reformate composition and output temperature) for each four reactors collected at different operating conditions was used to predict the parameters of the proposed kinetic model. The kinetic model involving 24 components, 1 to 11 carbon atoms for paraffins and 6 to 11 carbon atom for naphthenes and aromatics with 71 reactions. The pre-exponential Arrhenius constants and a

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 25 2021
Journal Name
Iraqi Journal Of Agricultural Sciences
OPTIMIZATION OF LEVOFLOXACIN REMOVAL FROM AQUEOUS SOLUTION USING ELECTROCOAGULATION PROCESS BY RESPONSE SURFACE METHODOLOGY

This study was aimed to investigate the response surface methodology (RSM) to evaluate the effects of various experimental conditions on the removal of levofloxacin (LVX) from the aqueous solution by means of electrocoagulation (EC) technique with stainless steel electrodes. The EC process was achieved successfully with the efficiency of LVX removal of 90%. The results obtained from the regression analysis, showed that the data of experiential are better fitted to the polynomial model of second-order with the predicted correlation coefficient (pred. R2) of 0.723, adjusted correlation coefficient (Adj. R2) of 0.907 and correlation coefficient values (R2) of 0.952. This shows that the predicted models and experimental values are in go

... Show More
Crossref (12)
Crossref
Publication Date
Mon May 27 2019
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Process Parameters That Affecting on Surface Roughness in Multi-Point Forming Process Using ANOVA Algorithm

 

Multipoint forming process is an engineering concept which means that the working surface of the punch and die is produced as hemispherical ends of individual active elements (called pins), where each pin can be independently, vertically displaced using a geometrically reconfigurable die. Several different products can be made without changing tools saved precious production time. Also, the manufacturing of very expensive rigid dies is reduced, and a lot of expenses are saved. But the most important aspects of using such types of equipment are the flexibility of the tooling. This paper presents an experimental investigation of the effect of three main parameters which are blank holder, rubber thickness and forming speed th

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Key Engineering Materials
Optimization of Electrocoagulation Process for the TSS and Turbidity Removal in Al-Qadisiyah Water Treatment Plant in Baghdad City by Response Surface Methodology

Electrocoagulation process was employed for the treatment of river water flows in Iraq. In this study, a batch Electrocoagulation process was used to treat river water taken from Al - Qadisiyah water treatment plant. electrolysis time, voltage and inter-electrode spacing were the most important parameters to study . A statistical model was developed using the RSM model. The optimum condition after studying the parameter effect the process was 1 cm separating, 30 volts . The RSM model shows the ideal condition of removal for both the TSS and turbidity at 1 cm, 20 volts and 55 min.

Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Scopus Crossref
View Publication
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization and Prediction of Process Parameters in SPIF that Affecting on Surface Quality Using Simulated Annealing Algorithm

Incremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess th

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Ecological Engineering
Modification of Electro-Fenton Process with Granular Activated Carbon for Phenol Degradation – Optimization by Response Surface Methodology

As a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen

... Show More
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Dec 01 2023
Journal Name
Advances In Science And Technology Research Journal
Scopus Clarivate Crossref
View Publication