This research includes structure interpretation of the Yamama Formation (Lower Cretaceous) and the Naokelekan Formation (Jurassic) using 2D seismic reflection data of the Tuba oil field region, Basrah, southern Iraq. The two reflectors (Yamama and Naokelekan) were defined and picked as peak and tough depending on the 2D seismic reflection interpretation process, based on the synthetic seismogram and well log data. In order to obtain structural settings, these horizons were followed over all the regions. Two-way travel-time maps, depth maps, and velocity maps have been produced for top Yamama and top Naokelekan formations. The study concluded that certain longitudinal enclosures reflect anticlines in the east and west of the study area representing Zubair and Rumaila fold confined between them a fold consist of two domes represents Tuba fold with the same trending of Zubair and Rumaila structures. The study confirmed the importance of this field as a reservoir of the accumulation of hydrocarbons.
An interpretative study of the two-dimensional seismic data of the Afaq area was conducted using the Petrel 2017 software. 2D seismic reflection sections are used to give a structural interpretation of Afaq structure based on synthetic seismogram and well log data. Three reflectors, Zubair, Yamama, and Gotina Formations, were selected. These reflectors are defined from well west kifl (wk-1), Where located adjacent to the study area. Structural maps of the Zubair, Yamama, and Gotnia formations are prepared and interpreted, including TWT maps, Average velocity maps, and depth maps. The studies concluded that the Afaq structure area does not contain main faults, but secondary faults with short and limited extensions
... Show MoreThis study deals with the seismic reflection interpretation of Cretaceous Formations in Tuba oil field, southern Iraq, including structural and stratigraphic techniques. The study achieved by using Geofram , Geolog and Petrel software. The interpretation process, of 2-D seismic data and well logs have been used. Based on well logs and synthetic traces two horizons were identified and picked which are the tops of Mishrif and Zubair Formations. These horizons were followed over all the area in order to obtain their structural setting. Structural interpretation indicates that the Tuba oil field is an anticline structure as well as the presence of normal fault near Mishrif Formation trending NE-SW. Information from the wells appeared Mishrif
... Show MoreThis research had been achieved to identify the image of the subsurface structure representing the Tertiary period in the Galabat Field northeast of Iraq using 2D seismic survey measurements. Synthetic seismograms of the Galabat-3 well were generated in order to identify and pick the reflectors in seismic sections. Structural Images were drawn in the time domain and then converted to the depth domain by using average velocities. Structurally, seismic sections illustrate these reflectors are affected by two reverse faults affected on the Jeribe Formation and the layers below with the increase in the density of the reverse faults in the northern division. The structural maps show Galabat field, which consists of longitudinal Asymmetrical narr
... Show MoreThe structural division and stratigraphic estimation of the perceptible geological basin are the most important for oil and gas exploration. This study attempts to obtain subsurface geology in parts of east Nasiriya, southern Iraq using of seismic data and some adjacent well information for structural and stratigraphic interpretation. To achieve this goal, 2D seismic data in SEG-Y format were used with velocity and logging data. The seismic profile is then interpreted as a two-dimensional (time domain and depth domain) contour map, which is represented as a real subsurface geology.
Reflectors from the Mishrif and Yamama Formations (Cretaceous period) were detected. According to the structural interpretation of the sel
... Show MoreSeismic data interpretation study has been done for Mishrif Formation in Nasiriyah oil field at the southern part of Iraq in order to update the structural image of Mishrif reservoir which is currently the main unit bearing the oil in subsurface area covered about (447) km2. This study is achieved by using Petrel, IP, and other approval software. Seismic to well tie method in conventional qualitative interpretation used to re-identify the top and bottom of the Mishrif reservoir which converted into structural depth maps and then followed by constructing and developing 3-D structural model helped to understand the vertical and lateral thickness extensions heterogeneity of Mishrif Formation in the field. The cap rock (CRI) has thickness ra
... Show MoreIn this research, a qualitative seismic processing and interpretation is made up
through using 3D-seismic reflection data of East-Baghdad oil field in the central part
of Iraq. We used the new technique, this technique is used for the direct hydrocarbons
indicators (DHI) called Amplitude Versus Offset or Angle (AVO or AVA) technique.
For this purposes a cube of 3D seismic data (Pre-stack) was chosen in addition to the
available data of wells Z-2 and Z-24. These data were processed and interpreted by
utilizing the programs of the HRS-9* software where we have studied and analyzed
the AVO within Zubair Formation. Many AVO processing operations were carried
out which include AVO processing (Pre-conditioning for gathe
The seismic reflection method has a primary role in petroleum exploration. This research is a structural interpretation study of the 2D seismic reflection survey carried out in the Upper West Euphrates (Khan Al-Baghdadi area), which is located in the western part of Iraq, Al-Anbar governorate. The two objectives of this research are to interpret Base Akkas/Top Khabour reflector and to define potential hydrocarbon traps in the surveyed area. Based on the synthetic seismogram of Akk_3 well near the study area, the Akkas/Top Khabour reflector was identified on the seismic section. Also, the Silurian Akkas Hot_shale reflector was identified and followed up, which represents the source and seal rocks of the Paleozoic
... Show MoreThe Amarah Oil field structure was studied and interpreted by using 2-D seismic data obtained from the Oil Exploration company. The study is concerned with Maysan Group Formation (Kirkuk Group) which is located in southeastern Iraq and belongs to the Tertiary Age. Two reflectors were detected based on synthetic seismograms and well logs (top and bottom Missan Group). Structural maps were derived from seismic reflection interpretations to obtain the location and direction of the sedimentary basin. Two-way time and depth maps were conducted depending on the structural interpretation of the picked reflectors to show several structural features. These included three types of closures, namely two anticlines extended in the directions of
... Show MoreThe seismic method depends on the nature of the reflected waves from the interfaces between layers, which in turn depends on the density and velocity of the layer, and this is called acoustic impedance. The seismic sections of the East Abu-Amoud field that is located in Missan Province, south-eastern Iraq, were studied and interpreted for updating the structural picture of the major Mishrif Formation for the reservoir in the Abu-amoud field. The Mishrif Formation is rich in petroleum in this area, with an area covering about 820 km2. The seismic interpretation of this study was carried out utilizing the software of Petrel-2017. The horizon was calibrated and defined on t
... Show MoreKirchhoff Time migration was applied in Pre and Post-Stack for 2D seismic survey for line AJ-99N, that is located in Ajeel oilfield in Salah Al-Din Governorate, Central Iraq. The process follows several accurate steps to reach the final time migration stage. The results of applied time migration give an accurate image for the Ajeel anticline reservoir and to improve the signal to noise ratio. Pre-Stack shows a clearer image for the structure in the study area, and the time-frequency analysis insure the result.