Permeability is one of the essential petrophysical properties of rocks, reflecting the rock's ability to pass fluids. It is considered the basis for building any model to predict well deliverability. Yamama formation carbonate rocks are distinguished by sedimentary cycles that separate formation into reservoir units and insulating layers, a very complex porous system caused by secondary porosity due to substitute and dissolution processes. Those factors create permeability variables and vary significantly. Three ways used for permeability calculation, the firstly was the classical method, which only related the permeability to the porosity, resulting in a weak relationship. Secondly, the flow zone indicator (FZI) was divided reservoir into two regions according to the bore throat and find correlation between them. Due to the lack of the core samples obtained in reservoir units, the correlations result were poor also. Thirdly, multilinear regression (MLR) was used to connect the logs and the variables that had the most significant influence on the calculated transmittance. It found the better match from other methods. Conclude that permeability was altering from very low in the insulator areas to medium in the reservoir units, which was characterized by cracks and fissures, which played an essential role in the permeability magintude. The importance of research is obtain permeability of wells in un-cored locations by used core data and well logs, which considered input for any geological and dynamic model.
The Yamama Formation was studied in three wells (Fh-1, Fh-2, and Fh-3) within Faihaa oil field, south Iraq. Thin sections were studied by using the polarizing microscope examination in order to determine microfossils and biozone. Thirty-five species of benthic foraminifera were recognized, including four index species. In addition, twelve species of calcareous green algae were recognized, including two index species. Other fossils that were recognized in Yamama Formation include Gastropoda, Bryozoa, Coral, Rudist, and Pelecypoda.
Six biozones were observed, which are Charentia cuvillieri sp. (Range Zone of Berriasian age), Psudochryalidina infracretacea
... Show More
The heterogeneity nature of carbonate reservoirs shows sever scattering of the data, therefore, one has to be cautious in using the permeability- porosity correlation for calculating permeability unless a good correlation coefficient is available. In addition, a permeability- porosity correlation technique is not enough by itself since simulation studies also require more accurate tools for reservoir description and diagnosis of flow and non-flow units.
Evaluation of reservoir characterization was conducted by this paper for Mishrif Formation in south Iraqi oil field (heterogeneous carbonate reservoir), namely the permeability-porosity correlation, the hydraulic units (HU’s) an
... Show MoreThe heterogeneity nature of carbonate reservoirs shows sever scattering of the data, therefore, one has to be cautious in using the permeability- porosity correlation for calculating permeability unless a good correlation coefficient is available. In addition, a permeability- porosity correlation technique is not enough by itself since simulation studies also require more accurate tools for reservoir description and diagnosis of flow and non-flow units. Evaluation of reservoir characterization was conducted by this paper for Mishrif Formation in south Iraqi oil field (heterogeneous carbonate reservoir), namely the permeability-porosity correlation, the hydraulic units (HU’s) and global hydraulic elements (GHE
... Show MoreThe major objective of this paper is to recognize the flow units of Yamama Formation in the west Qurna oil field, south of Iraq. To attain this objective, four wells namely, WQ-23, WQ-148, WQ-60, and WQ-203 are selected and analyzed. The two techniques hat proposed by some scientists to identify flow units are tested and verified. Results are also enhanced using well logs interpretation and the flow areas are proposed through the studying of the behavior of different well logs. Results of applying the two proposed techniques identify six flow reservoir units for the wells WQ-23, WQ-148, WQ-60, and WQ-203, respectively. This study also shows that the flow reservoir properties in the Yamama Formation improved towards the northeast of the W
... Show MoreThe study is an attempt to predict reservoir characterization by improving the estimation of petro-physical properties (porosity), through integration of wells information and 3D seismic data in early cretaceous carbonate reservoir Yamama Formation of (Abu-Amoud) field in southern part of Iraq. Seismic inversion (MBI) was used on post- stack 3 dimensions seismic data to estimate the values of P-acoustic impedance of which the distribution of porosity values was estimated through Yamama Formation in the study area. EMERGE module on the Hampson Russel software was applied to create a relationship between inverted seismic data and well data at well location to construct a perception about the distribution of porosity on the level of all uni
... Show MoreThe petrophysical analysis is very important to understand the factors controlling the reservoir quality and production wells. In the current study, the petrophysical evaluation was accomplished to hydrocarbon assessment based on well log data of four wells of Early Cretaceous carbonate reservoir Yamama Formation in Abu-Amood oil field in the southern part of Iraq. The available well logs such as sonic, density, neutron, gamma ray, SP, and resistivity logs for wells AAm-1, AAm-2, AAm-3, and AAm-5 were used to delineate the reservoir characteristics of the Yamama Formation. Lithologic and mineralogic studies were performed using porosity logs combination cross plots such as density vs. neutron cross plot and M-N mineralogy plot. Thes
... Show More3D geological model of a simple petroleum reservoir for Yamama Formation has
been built in Abu Amood Oil Field using Petrel software, which is a product of
Schlumberger. This model contains the structure, stratigraphy and reservoir
properties (porosity and water saturation) in three directions(X, Y and Z).Geologic
modeling is an applied science of creating computerized representations of portions
of the earth's crust, especially oil and gas fields.
Yamama Formation in Abu Amood Oil Field is divided into thirteen zones by
using well logs and their petrophysical properties, six of which are reservoir zones.
From the top of the formation these six zones are: (YB-1, YB-2, YB-3, YC-1, YC-2
and YC-3). These reservoir
Yamama Formation (Valanginian-Early Hauterivian) is one of the most important oil production reservoirs in southern Mesopotamian Zone. The Yamama Formation in south Iraq comprises outer shelf argillaceous limestones and oolitic, pelloidal, pelletal and pseudo-oolitic shoal limestones. The best oil prospects are within the oolite shoals. Yamama Formation is divided into seven zones: Upper Yamama, Reservoir Units YR-A & YR-B separated by YB-1, and YR-B Lower & two Tight zones: low (porosity, permeability and oil saturation) with variable amounts of bitumen. These reservoir units are thought to be at least partially isolated from each other.
Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy
... Show More