The Middle Cenomanian-Early Turonian Mishrif Formation includes important carbonate reservoirs in Iraq and some other surrounding countries due to their high reservoir quality and wide geological extension. The 2D models of this study for facies, effective porosity and water saturation indicate the vertical and lateral heterogeneity of the Mishrif Formation reservoir properties in the Majnoon oil field. Construction of 2D reservoir model of the Mishrif Formation to explain the distribution of facies and petrophysical properties (effective porosity and water saturation) by using RockWorks software. The increase of effective porosity is attributed to the presence of shoal facies.The high water saturation is attributed to the existence of restricted marine facies or shallow open marine facies.Maximum values of hydrocarbon saturation is predicted to occur towards the crestal parts of the field.
The reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of restricte
... Show MoreThe reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of rest
... Show MorePetrophysical properties of Mishrif Formation at the Tuba field determined from interpretation of open log data of(Tu-2,3,4,5,6,12,24,and 25) wells. These properties include total (effected) and secondary porosity, as well as moveable and residual oil saturation into invaded and uninvaded zones. According to Petrophysical properties it is possible to divided Mishrif Formation into three reservoir units (RU1,2,and 3) separated by four cap rocks (Bar1,2,3,and 4) . Three-dimension reservoir model is established by used (Petrel, 2009) Software for each reservoir units. Result shows that the second and third reservoir units represent important reservoir units of Mishrif Formation. Thickness and reservoir properties enhanced toward middle and
... Show MoreThis study is achieved in the local area of the Eridu oil field, where the Mishrif Formation is considered the main productive reservoir. The Mishrif Formation was deposited during the Cretaceous period in the secondary sedimentary cycle (Cenomanian-Early Turonian as a part of the Wasia Group, a carbonate succession widespread throughout the Arabian Plate.
The Mishrif Formation already have been evaluated in terms of depositional environments and their diagenetic processes. Here, it will test the previous conclusions with petrophysical properties delineated by using well logging. The results show there is a fully matching with two reservoir units (MA and MB). Dissolution and primary porosity are responsible for f
... Show MorePetrophysical properties of Mishrif Formation at Amara oil field is determined
from interpretation of open log data of (Am-1, 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12
and13) wells. These properties include the total, the effected and the secondary
porosity, as well as the moveable and the residual oil saturation in the invaded and
uninvaded zones. According to petrophysical properties it is possible to divided
Mishrif Formation which has thickness of a proximately 400 m, into seven main
reservoir units (MA, MB11, MB12, MB13, MB21, MC1, MC2) . MA is divided into
four secondary reservoir units , MB11 is divided into five secondary reservoir units ,
MB12 is divided into two secondary reservoir units , MB13 is divided into
This study aims to set up a 3D static model to characterize and evaluate Mishrif Formation which represents the main reservoir in Buzurgan Oilfield, southern Iraq. Six wells have been selected to set up structural, facies and petrophysical models of Mishrif reservoir by using Petrel Software. The structural model has been built based on the structural contour map of the top of Mishrif Formation, which derived from seismic interpretation, and by using different static algorithms in Petrel Software. The structural model showed that the Buzurgan Oilfield represents an anticlinal fold with two domes north and south separated by a depression. The petrophysical model included the porosity model and water saturation model. Th
... Show MoreThe main goal of this study is to evaluate Mishrif Reservoir in Abu Amood oil field, southern Iraq, using the available well logs. The sets of logs were acquired for wells AAm-1, AAm-2, AAm-3, AAm-4, and AAm-5. The evaluation included the identification of the reservoir units and the calculation of their petrophysical properties using the Techlog software. Total porosity was calculated using the neutron-density method and the values were corrected from the volume of shale in order to calculate the effective porosity. Computer processed interpretation (CPI) was accomplished for the five wells. The results show that Mishrif Formation in Abu Amood field consists of three reservoir units with various percentages of h
... Show MoreThis research deals with the study of the types and distribution of petrographic microfacies and Paleoenvironments of Mishrif Formation in Halfaya oil field, to define specific sedimentary environments. These environments were identified by microscopic examination of 35 thin sections of cutting samples for well HF-9H as well as 150 thin sections of core and cutting samples for well HF-I. Depending on log interpretation of wells HF-1, HF-316, HF-109, IIF-115, and IIF-272, the sedimentary facies were traced vertically through the use of various logs by Petrel 2013 software in addition to previous studies. Microfacies analysis showed the occurrence of six main Paleoenvironments within Mishrif succession, represented
... Show MoreThis study aims to evaluate reservoir characteristics of Hartha Formation in Majnoon oil field based on well logs data for three wells (Mj-1, Mj-3 and Mj-11). Log interpretation was carried out by using a full set of logs to calculate main petrophysical properties such as effective porosity and water saturation, as well as to find the volume of shale. The evaluation of the formation included computer processes interpretation (CPI) using Interactive Petrophysics (IP) software. Based on the results of CPI, Hartha Formation is divided into five reservoir units (A1, A2, A3, B1, B2), deposited in a ramp setting. Facies associations is added to well logs interpretation of Hartha Formation, and was inferred by a microfacies analysis of th
... Show MoreNasryia oil field is located about 38 Km to the north-west of Nasryia city. The field was discovered in 1975 after doing seismic by Iraqi national oil company. Mishrif formation is a carbonate rock (Limestone and Dolomite) and its thickness reach to 170m. The main reservoir is the lower Mishrif (MB) layer which has medium permeability (3.5-100) md and good porosity (10-25) %. Form well logging interpretation, it has been confirmed the rock type of Mishrif formation as carbonate rock. A ten meter shale layer is separating the MA from MB layer. Environmental corrections had been applied on well logs to use the corrected one in the analysis. The combination of Neutron-Density porosity has been chosen for interpretation as it is c
... Show More