Preferred Language
Articles
/
mRe9Zo4BVTCNdQwCbkZ3
Advanced Machine Learning application for Permeability Prediction for (M) Formation in an Iraqi Oil Field

Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy and the performance of the algorithms. The random forest algorithm was the most accurate method leading to lowest Root Mean Square Prediction Error (RMSPE) and highest Adjusted R-Square than multiple linear regression algorithm for both training and testing subset respectively. Thus, random Forest algorithm is more trustable in permeability prediction in non-cored intervals and its distribution in the geological model.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
Scopus (7)
Crossref (6)
Scopus Crossref
View Publication
Publication Date
Sun Mar 31 2024
Journal Name
Iraqi Geological Journal
Permeability Prediction and Facies Distribution for Yamama Reservoir in Faihaa Oil Field: Role of Machine Learning and Cluster Analysis Approach

Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F

... Show More
Scopus Crossref
View Publication
Publication Date
Sat Sep 30 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Prediction By Classical and Flow Zone Indictor (FZI) Methods for an Iraqi Gas Field

The permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Second International Conference On Innovations In Software Architecture And Computational Systems (isacs 2022)
Permeability estimation of Yamama formation in a Southern Iraqi oil field, case study

Permeability is one of the essential petrophysical properties of rocks, reflecting the rock's ability to pass fluids. It is considered the basis for building any model to predict well deliverability. Yamama formation carbonate rocks are distinguished by sedimentary cycles that separate formation into reservoir units and insulating layers, a very complex porous system caused by secondary porosity due to substitute and dissolution processes. Those factors create permeability variables and vary significantly. Three ways used for permeability calculation, the firstly was the classical method, which only related the permeability to the porosity, resulting in a weak relationship. Secondly, the flow zone indicator (FZI) was divided reservoir into

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Prediction of Brain Stroke at an Early Stage

     The healthcare sector has traditionally been an early adopter of technological progress, gaining significant advantages, particularly in machine learning applications such as disease prediction. One of the most important diseases is stroke. Early detection of a brain stroke is exceptionally critical to saving human lives. A brain stroke is a condition that happens when the blood flow to the brain is disturbed or reduced, leading brain cells to die and resulting in impairment or death. Furthermore, the World Health Organization (WHO) classifies brain stroke as the world's second-deadliest disease. Brain stroke is still an essential factor in the healthcare sector. Controlling the risk of a brain stroke is important for the surviv

... Show More
Scopus (3)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Mar 29 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Water Injection for Oil Recovery in Mishrif Formation for Amarah Oil Field

The water injection of the most important technologies to increase oil production from petroleum reservoirs. In this research, we developed a model for oil tank using the software RUBIS for reservoir simulation. This model was used to make comparison in the production of oil and the reservoir pressure for two case studies where the water was not injected in the first case study but adding new vertical wells while, later, it was injected in the second case study. It represents the results of this work that if the water is not injected, the reservoir model that has been upgraded can produce only 2.9% of the original oil in the tank. This case study also represents a drop in reservoir pressure, which was not enough to support oil production

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Wed Oct 31 2018
Journal Name
Iraqi Journal Of Science
Porosity Prediction from Seismic Inversion for Yamama Formation in (Abu-Amoud) Oil Field in Southern of Iraq

The study is an attempt to predict reservoir characterization by improving the estimation of petro-physical properties (porosity), through integration of wells information and 3D seismic data in early cretaceous carbonate reservoir Yamama Formation of (Abu-Amoud) field in southern part of Iraq. Seismic inversion (MBI) was used on post- stack 3 dimensions seismic data to estimate the values of P-acoustic impedance of which the distribution of porosity values was estimated through Yamama Formation in the study area. EMERGE module on the Hampson Russel software was applied to create a relationship between inverted seismic data and well data at well location to construct a perception about the distribution of porosity on the level of all uni

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Permeability Prediction for Nahr-Umr Reservoir / Subba field by Using FZI Method

 The permeability determination in the reservoirs that are anisotropic and heterogeneous is a complicated problem due to the limited number of wells that contain core samples and well test data. This paper presents hydraulic flow units and flow zone indicator for predicting permeability of rock mass from core for Nahr-Umr reservoir/ Subba field. The Permeability measurement is better found in the laboratory work on the cored rock that taken from the formation. Nahr-Umr Formation is the main lower cretaceous sandstone reservoir in southern of Iraq. This formation is made up mainly of sandstone. Nahr-Umr formation was deposited on a gradually rising basin floor. The digenesis of Nahr-Umr sediments is very important du

... Show More
View Publication Preview PDF