Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
The present study reports Morchella conica Pers.1818, which belongs to the family, Morchellaceae as a new record of Iraqi macromycota based on the morphological and molecular methods. During their short and often sporadic fruiting season, this fungal species was found in mixed forest unburned areas in Branan ranges (Suliamaniya Province, Northeast Iraq). Currently, M. conica is the second Morchella species reported from Iraq. The current study aimed to introduce this new record, which is poorly studied in the Middle East. M. conica is morphologically described and phylogenetically confirmed. The relationship between this species and other species within the genus was studied using the nrDNA ITS sequences from different species and divers
... Show MoreBackground: The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically recognized for its role in the regulation of toxicity mediated by environmental chemicals. Recent research points to AhR's critical participation in male reproductive physiology, particularly in spermatogenesis, hormone signaling, and the maintenance of sperm quality. Both endogenous ligands (e.g., dietary and gut microbiota-derived metabolites) and exogenous pollutants (e.g., dioxins and benzo-α-pyrene) influence AhR-mediated pathways, making it a key link between environmental exposures and male fertility. Results: This review highlights AhR's influence on the male reproductive system, emphasizing the role of endogenous AhR ligands an
... Show MoreCancer is in general not a result of an abnormality of a single gene but a consequence of changes in many genes, it is therefore of great importance to understand the roles of different oncogenic and tumor suppressor pathways in tumorigenesis. In recent years, there have been many computational models developed to study the genetic alterations of different pathways in the evolutionary process of cancer. However, most of the methods are knowledge-based enrichment analyses and inflexible to analyze user-defined pathways or gene sets. In this paper, we develop a nonparametric and data-driven approach to testing for the dynamic changes of pathways over the cancer progression. Our method is based on an expansion and refinement of the pathway bei
... Show MoreAs a result of the significance of image compression in reducing the volume of data, the requirement for this compression permanently necessary; therefore, will be transferred more quickly using the communication channels and kept in less space in memory. In this study, an efficient compression system is suggested; it depends on using transform coding (Discrete Cosine Transform or bi-orthogonal (tap-9/7) wavelet transform) and LZW compression technique. The suggested scheme was applied to color and gray models then the transform coding is applied to decompose each color and gray sub-band individually. The quantization process is performed followed by LZW coding to compress the images. The suggested system was applied on a set of seven stand
... Show MoreThe current work is characterized by simplicity, accuracy and high sensitivity Dispersive liquid - Liquid Micro Extraction (DLLME). The method was developed to determine Telmesartan (TEL) and Irbesartan (IRB) in the standard and pharmaceutical composition. Telmesartan and Irbesartan are separated prior to treatment with Eriochrom black T as a reagent and formation ion pair reaction dye. The analytical results of DLLME method for linearity range (0.2- 6.0) mg /L for both drugs, molar absorptivity were (1.67 × 105- 5.6 × 105) L/ mole. cm, limit of detection were (0.0242and0.0238), Limit of quantification were (0.0821and0.0711), the Distribution coefficient were
... Show MoreIn this study Microwave and conventional methods have been used to extract and estimate pectin and its degree of esterification from dried grapefruit and orange peels. Acidified solution water with nitric acid in pH (1.5) was used. In conventional method, different temperature degrees for extraction pectin from grape fruit and orange(85 ,90 , 95 and 100?C) for 1 h were used The results showed grapefruit peels contained 12.82, 17.05, 18.47, 15.89% respectively, while the corresponding values were 5.96, 6.74, 7.41 and 8.00 %, respectively in orange peels. In microwave method, times were 90, 100, 110 and 120 seconds. Grapefruit peels contain 13.86, 16.57, 18.69, and 17.87%, respectively, while the corresponding values were of 6.53, 6.68, 7.2
... Show More
Nanomaterials have an excellent potential for improving the rheological and tribological properties of lubricating oil. In this study, oleic acid was used to surface-modify nanoparticles to enhance the dispersion and stability of Nanofluid. The surface modification was conducted for inorganic nanoparticles (NPs) TiO₂ and CuO with oleic acid (OA) surfactant, where oleic acid could render the surface of TiO2-CuO hydrophobic. Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM) were used to characterize the surface modification of NPs. The main objective of this study was to investigate the influence of adding modified TiO₂-CuO NPs with weight ratio 1:1 on thermal-physical propertie
... Show MoreThe reaction of starting materials (L-asCl2):bis[O,O-2,3;O,O-5,6-(chloro(carboxylic) methylidene)]- -L-ascorbic acid] with glycine gives new product bis[O,O-2,3,O,O-5,6-(N,O-di carboxylic methylidene N-glycine)-L-ascorbic acid] (L-as-gly) which is isolated and characterized by, Mass spectrum UV-visible and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the (L-as-gly) with M+2; Co(II) Ni(II) Cu(II) and Zn(II) has been characterized by FT- IR , Uv-Visible , electrical conductivity, magnetic susceptibility methods and atomic absorption and molar ratio . The analysis showed that the ligand coordinate with metal ions through mono dentate carboxylic resulting in six-coordinated with Co(II) Ni(II) Cu(II) ions while with
... Show More