As a result of the significance of image compression in reducing the volume of data, the requirement for this compression permanently necessary; therefore, will be transferred more quickly using the communication channels and kept in less space in memory. In this study, an efficient compression system is suggested; it depends on using transform coding (Discrete Cosine Transform or bi-orthogonal (tap-9/7) wavelet transform) and LZW compression technique. The suggested scheme was applied to color and gray models then the transform coding is applied to decompose each color and gray sub-band individually. The quantization process is performed followed by LZW coding to compress the images. The suggested system was applied on a set of seven standard images; the achieved compression results showed good efficiency in increasing the compression while keeping the fidelity level with the acceptable level. The acquired compression ratios are 20 for color Lena and 12.4 for gray Lena, both are 32 dB of PSNR.
The need for image compression is always renewed because of its importance in reducing the volume of data; which in turn will be stored in less space and transferred more quickly though the communication channels.
In this paper a low cost color image lossy color image compression is introduced. The RGB image data is transformed to YUV color space, then the chromatic bands U & V are down-sampled using dissemination step. The bi-orthogonal wavelet transform is used to decompose each color sub band, separately. Then, the Discrete Cosine Transform (DCT) is used to encode the Low-Low (LL) sub band. The other wavelet sub bands are coded using scalar Quantization. Also, the quad tree coding process was applied on the outcomes of DCT and
Storing, transferring, and processing high-dimensional electroencephalogram (EGG) signals is a critical challenge. The goal of EEG compression is to remove redundant data in EEG signals. Medical signals like EEG must be of high quality for medical diagnosis. This paper uses a compression system with near-zero Mean Squared Error (MSE) based on Discrete Cosine Transform (DCT) and double shift coding for fast and efficient EEG data compression. This paper investigates and compares the use or non-use of delta modulation, which is applied to the transformed and quantized input signal. Double shift coding is applied after mapping the output to positive as a final step. The system performance is tested using EEG data files from the C
... Show MoreThe widespread use of images, especially color images and rapid advancement of computer science, have led to an emphasis on securing these images and defending them against intruders. One of the most popular ways to protect images is to use encryption algorithms that convert data in a way that is not recognized by someone other than the intended user. The Advanced Encryption Standard algorithm (AES) is one of the most protected encryption algorithms. However, due to various types of theoretical and practical assaults, like a statistical attack, differential analysis, and brute force attack, its security is under attack.
In this paper, a modified AES coined as (M-AES) is proposed to improve the efficiency
... Show MoreIn present work the effort has been put in finding the most suitable color model for the application of information hiding in color images. We test the most commonly used color models; RGB, YIQ, YUV, YCbCr1 and YCbCr2. The same procedures of embedding, detection and evaluation were applied to find which color model is most appropriate for information hiding. The new in this work, we take into consideration the value of errors that generated during transformations among color models. The results show YUV and YIQ color models are the best for information hiding in color images.
In this paper, a compression system with high synthetic architect is introduced, it is based on wavelet transform, polynomial representation and quadtree coding. The bio-orthogonal (tap 9/7) wavelet transform is used to decompose the image signal, and 2D polynomial representation is utilized to prune the existing high scale variation of image signal. Quantization with quadtree coding are followed by shift coding are applied to compress the detail band and the residue part of approximation subband. The test results indicate that the introduced system is simple and fast and it leads to better compression gain in comparison with the case of using first order polynomial approximation.
Image compression is very important in reducing the costs of data storage transmission in relatively slow channels. Wavelet transform has received significant attention because their multiresolution decomposition that allows efficient image analysis. This paper attempts to give an understanding of the wavelet transform using two more popular examples for wavelet transform, Haar and Daubechies techniques, and make compression between their effects on the image compression.
A special methodology for adding a watermark for colored (RGB) image is formed and adding the wavelet transform as a tool during this paper. The watermark is added into two components. The primary one is by taking the key that contain associate eight range from (0...7) every range in it determines the actual bit position in specific component of canopy image. If that bit is analogous to the bit in watermark, (0) are hold on within the Least Significant Bit (LSB) of the watermarked image; otherwise (1) are hold on. The other is that it will add multiple secret keys victimization shift and rotate operations. The watermark is embedded redundantly over all extracted blocks in image to extend image protection. This embedding is completed with
... Show MoreIn this paper, an efficient method for compressing color image is presented. It allows progressive transmission and zooming of the image without need to extra storage. The proposed method is going to be accomplished using cubic Bezier surface (CBI) representation on wide area of images in order to prune the image component that shows large scale variation. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, bi-orthogonal wavelet transform is applied to decompose the residue component. Both scalar quantization and quad tree coding steps are applied on the produced wavelet sub bands. Finally, adaptive shift coding is applied to handle the remaining statistical redundancy and attain e
... Show More