Experiments were carried out to investigate natural convection heat transfer in an inclined uniformly heated circular cylinder . The effects of surface heat flux and angle of inclination on the temperature and local Nusselt number variations along the cylinder surface are discussed . The investigation covers heat flux range from 92 W/m² to 487 W/m², and angles of inclination 0° ( horizontal) , 30° , 60° and 90° (vertical) . Results show an increase in the natural convection as heat flux increases and as angle of inclination moves from vertical to horizontal position. An empirical equation of average Nusselt number as a function of Rayliegh number was deduced for each angle of inclination .
Numerical simulations have been investigated to study the external free convective heat transfer from a vertically rectangular interrupted fin arrays. The continuity, Naver-Stockes and energy equations have been solved for steady-state, incompressible, two dimensional, laminar with Boussiuesq approximation by Fluent 15 software. The performance of interrupted fins was evaluated to gain the optimum ratio of interrupted length to fin length (
Steady natural convection in a square enclosure with wall length (L= 20 cm) partially filled by saturated porous medium with same fluid (lower layer) and air (upper layer) is investigated. The conceptual study of the achievements of the heat transfer is performed under effects of bottom heating by constant heat flux (q=150,300,450,600W/m2 ) for three heaters size (0.2,0.14,0.07)m with symmetrically cooling with constant temperature on two vertical walls and adiabatic top wall. The relevant filled studied parameters are four different porous medium heights (Hp=0.25L,0.5L, 0.75L, L), Darcey number (Da1) 3.025×10-8 and (Da2) 8.852×10-4 ) and Rayleigh number range (60.354 - 241.41), (1.304×106 – 5.2166×106 ) for Da1 and Da2 cases respecti
... Show MoreThe effect of linear thermal stratification in stable stationary ambient fluid on free convective flow of a viscous incompressible fluid along a plane wall is numerically investigated in the present work. The governing equations of continuity, momentum and energy are solved numerically using finite difference method with Alternating Direct implicit Scheme. The velocity, temperature distributions
and the Nusselt number are discussed numerically for various values of physical parameters and presented through graphs. ANSYS program also used to solve the problem. The results show that the effect of stratification parameter is marginalized with the increase in Prandtl number, and the increase in Grashof number does not practically vary the
Transient three-dimensional natural convection heat transfer due to the influences of heating from one side of an enclosure filled with a saturated porous media, whereas the opposite side is maintained at a constant cold temperature, and the other four sides are adiabatic, were investigated in the present work experimentally. Silica sand was used as a porous media saturated with distilled water filled in a cubic enclosure heated from the side,using six electrical controlled heaters, at constant temperatures of (60, 70, 80, 90, and 100oC). The inverse side cooled at a constant temperature of (24oC) using an aluminum heat exchanger, consisted of 15 channels feeded with constant temperature water. Eighty thermocouples were used to control t
... Show More