Almost all thermal systems utilize some type of heat exchanger. In a lot of cases, evaporators are important for systems like organic Rankine cycle systems. Evaporators give a share in a large portion of the capital cost, and their cost is significantly attached to their size or transfer area. Open-cell metal foams with high porosity are taken into consideration to enhance thermal performance without increase the size of heat exchangers. Numerous researchers have tried to find a representation of the temperature distribution closer to reality due to the different properties between the liquid and solid phases. Evaporation heat transfer in an annular pipe of double pipe heat exchanger (DPHEX) filled with cooper foam is investigated numerically with utilizing the local thermal non-equilibrium (LTNE) model. Warm water with constant inlet conditions flows in the inner pipe while R143a is used as cooling fluid in the annular pipe. The effects of pores per inch (PPI), mass flux of R134a and copper foam porosity on solid and fluid temperatures, liquid saturation and heat transfer coefficient are analysed and illustrated. Forchheimer-extended Darcy flow model is utilized with the adopting of the two-phase mixture model (TPMM). The governing equations in two-dimensional steady state regime were written in LTNE model. These equations were discretized using the finite volume method and a MATLAB program was built to solve these equations with its initial and boundary conditions. The obtained data illustrates that LTNE effect in metal foam is important for lower porosity, lower pore density and higher mass flux. The ratio of liquid will arrive its lowest value at the outlet, and it decreases with PPI increase and it increases with porosity and mass flux increase. The mean heat transfer coefficient approximately doubled when PPI increased from 10 to 50 and it increased by 70% when porosity decreased from 0.95 to 0.85.
The essential objective of this paper is to introduce new notions of fibrewise topological spaces on D that are named to be upper perfect topological spaces, lower perfect topological spaces, multi-perfect topological spaces, fibrewise upper perfect topological spaces, and fibrewise lower perfect topological spaces. fibrewise multi-perfect topological spaces, filter base, contact point, rigid, multi-rigid, multi-rigid, fibrewise upper weakly closed, fibrewise lower weakly closed, fibrewise multi-weakly closed, set, almost upper perfect, almost lower perfect, almost multi-perfect, fibrewise almost upper perfect, fibrewise almost lower perfect, fibrewise almost multi-perfect, upper* continuous fibrewise upper∗ topol
... Show MoreCsaszar introduced the concept of generalized topological space and a new open set in a generalized topological space called -preopen in 2002 and 2005, respectively. Definitions of -preinterior and -preclosuer were given. Successively, several studies have appeared to give many generalizations for an open set. The object of our paper is to give a new type of generalization of an open set in a generalized topological space called -semi-p-open set. We present the definition of this set with its equivalent. We give definitions of -semi-p-interior and -semi-p-closure of a set and discuss their properties. Also the properties of -preinterior and -preclosuer are discussed. In addition, we give a new type of continuous function
... Show MoreLet M be an R-module, where R is commutative ring with unity. In this paper we study the behavior of strongly hollow and quasi hollow submodule in the class of strongly comultiplication modules. Beside this we give the relationships between strongly hollow and quasi hollow submodules with V-coprime, coprime, bi-hollow submodules.
The main idea of this research is to consider fibrewise pairwise versions of the more important separation axioms of ordinary bitopology named fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise -Hausdorff spaces, fibrewise pairwise functionally -Hausdorff spaces, fibrewise pairwise -regular spaces, fibrewise pairwise completely -regular spaces, fibrewise pairwise -normal spaces and fibrewise pairwise functionally -normal spaces. In addition we offer some results concerning it.
The primary objective of this paper is to introduce a new concept of fibrewise topological spaces on D is named fibrewise multi- topological spaces on D. Also, we entroduce the concepts of multi-proper, fibrewise multi-compact, fibrewise locally multi-compact spaces, Moreover, we study relationships between fibrewise multi-compact (resp., locally multi-compac) space and some fibrewise multi-separation axioms.
The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuz
... Show MoreIn this paper we introduced many new concepts all of these concepts completely
depended on the concept of feebly open set. The main concepts which introduced in
this paper are minimal f-open and maximal f-open sets. Also new types of
topological spaces introduced which called Tf min and Tf max spaces. Besides,
we present a package of maps called: minimal f-continuous, maximal f-continuous,
f-irresolute minimal, f-irresolute maximal, minimal f-irresolute and maximal firresolute.
Additionally we investigated some fundamental properties of the concepts
which presented in this paper.
In this work we define and study new concept of fibrewise topological spaces, namely fibrewise soft topological spaces, Also, we introduce the concepts of fibrewise closed soft topological spaces, fibrewise open soft topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces.
In this paper, we introduced module that satisfying strongly -condition modules and strongly -type modules as generalizations of t-extending. A module is said strongly -condition if for every submodule of has a complement which is fully invariant direct summand. A module is said to be strongly -type modules if every t-closed submodule has a complement which is a fully invariant direct summand. Many characterizations for modules with strongly -condition for strongly -type module are given. Also many connections between these types of module and some related types of modules are investigated.