The aim of present work is to improve mechanical and fatigue properties for Aluminum alloy7049 by using Nano composites technique. The ZrO2 with an average grain diameter of 30-40 nm, was selected as Nano particles, to reinforce Aluminum alloy7049 with different percentage as, 2, 4, 6 and 7 %. The Stir casting method was used to fabricate the Nano composites materials due to economical route for improvement and processing of metal matrix composites. The experimental results were shown that the adding of zirconium oxide (ZrO2) as reinforced material leads to improve mechanical properties. The best percentage of improvement of mechanical properties of 7049 AA was with 4% wt. of ZrO2 about (7.76% ) for ultim
... Show MoreIn this paper, magnesium oxide nanoparticles (MgO NPS) have been prepared and characterized and its concentration effect has been studied on polymers surface (MgO NPS). The results showed that the degradation of poly methyl methacrylate increased when using such metal oxide. The results also showed that the metal oxide increased the degradation of poly methyl methacrylate. X-ray diffraction, scanning electron microscopy, atomic force microscopy were used to study the morphological characteristics and size of nano MgO particles analysis. Films were prepared by mixing the different masses of MgO NPS (0.025, 0.05, 0.1, 0.2 and 0.4) % with a polymer solution ratio (W/V) 7 %. Photo-
... Show MoreThe corrosion behavior of copper and carbon steel in 1M concentration of hydrochloric acid (HCl) and sulphuric acid (H2SO4) has been studied. The corrosion inhibition of copper and carbon steel in 1M concentration of hydrochloric acid (HCl) and sulphuric acid (H2SO4) by Ciprofloxacin has been investigated. Specimens were exposed in the acidic media for 7 hours and corrosion rates evaluated by using the weight loss method. The effect of temperature (from 283 ºK to 333 ºK), pH (from 1to 6), inhibitor concentration (10-4 to 10-2) has been studied. It was observed that sulphuric acid environment was most corrosive to the metals because of its oxidizing nature, followed by hydrochloric acid. The rate of metal dissolution increased with incre
... Show MoreThis research involves studying the mechanical properties and corrosion behavior of “low carbon steel” (0.077wt% C) before and after welding using Arc, MIG and TIG welding. The mechanical properties include testing of microhardness, tensile strength, the results indicate that microhardness of TIG, MIG welding is more than arc welding, while tensile strength in arc welding more than TIG and MIG.
The corrosion behavior of low carbon weldments was performed by potentiostat at scan rate 3mV.sec-1 in 3.5% NaCl to show the polarization resistance and calculate the corrosion rate from data of linear polarization by “Tafel extrapolation method”. The results indicate that the TIG welding increase the corrosion current d
... Show MoreObjectives: This study aimed to evaluate and compare the effect of plasma treatment versus conventional treatment on the micro shear bond strength (μSBS), surface roughness, and wettability of three different CAD/CAM materials. Materials and methods: Sixty cylindrical specimens (5 mm diameter ×3 mm height) were prepared from three different CAD/CAM materials: Group A: Zirconia, Group B: Lithium disilicate, and Group C: Resin nano-ceramic. Each group was subdivided into two subgroups according to surface treatment used: Subgroup I: Conventional treatment, zirconia was sandblasted with Al2O3, while lithium disilicate and resin nano-ceramic were etched with hydrofluoric acid. Subgroup II: Plasma treatment, the surface of each material was tr
... Show MoreBackground: Adjustment of any premature occlusal contact of any zirconia restoration requires its polishing or glazing in order to restore the smoothness of the restoration. The objective of this in vitro study was to evaluate the effects of different polishing systems and glazing on the surface roughness of full-contour zirconia. Material and methods: Forty disks (diameter: 8 mm, thickness: 6.4 mm) were prepared from pre-sintered full-contoured zirconia block; they were colored and sintered in a high-temperature furnace at 1500ËšC for 8 hours. The specimens were then leveled and finished using grinding and polishing machine and adjusted using diamond disk. The specimens were then randomly divided into four groups (n=10), group I involves
... Show MoreBackground: The aim of the study was to investigate the effect of surface treatments of zirconia (grinding and sandblast with 50μm, 100 μm) on shear bond strength between zirconia core and veneering ceramic. Material and methods: Twenty-eight presintered Y-TZP ceramic specimens (IPS e.max ZirCAD, Ivoclar vivadent) were fabricated and sintered according to manufacturer’s instructions. The core specimens were divided randomly in to 4 groups, group 1: no surface treatment, group2: zirconia specimens were ground with silicon carbide paper up to1200 grit under water cooling, group3: zirconia specimens were ground and sandblast with 100 μm alumina, group 4: zirconia specimens were ground and sandblast with 50 μm alumina. Surfa
... Show MoreTitanium alloy (Ti-6Al-4V) samples were nitrided in low pressure (1.3, 3 mbar) dc-glow discharge plasmas of nitrogen. The treating time was 5, 10 and 15 hour and the temperatures range of the samples during the nitriding process was close to 800oC. The obtained microstructures of the nitride layers were studied by x-ray diffraction and optical microscopy. The ε –Ti2N, ζ-Ti3N3-x and η-Ti3N2-x.phases were formed and addition to the solid solution of nitrogen in titanium, α (Ti,N). Micro hardness measurements exhibit an increment for the Ti-alloy specimens which nitrided at 800oC for 10 and 15h.Corrosion measurements were obtained for the Ti-6Al-4V alloy in Ringer solution after plasma nitriding. The clear improving in the corrosion r
... Show MoreIn this research we investigated the corrosion behavior of the commertialy pure titanium and Ti-6Al-4V alloy that coated with hydroxyapatite by electrochemical deposition with applied voltage (6,9,12) Volt from aqueous solution containing Ca(NO3)2.H2O =7.0 gm/l , (NH4)2HPO4 =3.5 gm/l , Na(NO3)2 = 8.5 gm/l in order to improve the bonding strength of hydroxyapetite and medical metals and alloys and increasing the biocompatibility. The coating layer morphology was investigated by XRD, Optical microscope , and SEM tests, the corrosio tests was made by use senthesys simulated body fluid (SBF) , and we found that the propreate voltage for coatint on Ti was 9 Volt and for Ti-6Al-4Vwas12Volt.