Preferred Language
Articles
/
joe-79
Optimum Dimensions of Hydraulic Structures and Foundation Using Genetic Algorithm coupled with Artificial Neural Network
...Show More Authors

      A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the  downstream side of the structure to overcome an excessive exit gradient. The Geo-studio software was used to analyze 1200 different cases. For each case the
length of protection (L) and volume of structure (V) required to satisfy the safety factors mentioned previously were estimated for the input values, namely, the upstream cutoff depth (S1), the downstream cutoff depth (S2), the foundation width (B), the angle of inclination of the upstream cutoff (Ɵ1)  and the angle of inclination of the downstream cutoff (Ɵ2), H (differencehead), kr (degree of anisotropy) and D (depth of impervious layer). An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the crossover probability, the mutation probability and level,
the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate
that the most factors that affects. the optimum solution is the $ number of population required. The minimum value that gives stable global optimum solution of this parameter is (30000) while other variables have little effect on the optimum solution. 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 01 2021
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Features of genetic algorithm for plain text encryption
...Show More Authors

The data communication has been growing in present day. Therefore, the data encryption became very essential in secured data transmission and storage and protecting data contents from intruder and unauthorized persons. In this paper, a fast technique for text encryption depending on genetic algorithm is presented. The encryption approach is achieved by the genetic operators Crossover and mutation. The encryption proposal technique based on dividing the plain text characters into pairs, and applying the crossover operation between them, followed by the mutation operation to get the encrypted text. The experimental results show that the proposal provides an important improvement in encryption rate with comparatively high-speed Process

... Show More
View Publication
Scopus (14)
Crossref (4)
Scopus Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Application of Artificial Neural Network for Predicting Iron Concentration in the Location of Al-Wahda Water Treatment Plant in Baghdad City
...Show More Authors

Iron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies.  In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some methods for estimating the parameters of the binary logistic regression model using the genetic algorithm with practical application
...Show More Authors

Abstract

   Suffering the human because of pressure normal life of exposure to several types of heart disease as a result of due to different factors. Therefore, and in order to find out the case of a death whether or not, are to be modeled using binary logistic regression model

    In this research used, one of the most important models of nonlinear regression models extensive use in the modeling of applications statistical, in terms of heart disease which is the binary logistic regression model. and then estimating the parameters of this model using the statistical estimation methods, another problem will be appears in estimating its parameters, as well as when the numbe

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Simulation Study of Mass Transfer Coefficient in Slurry Bubble Column Reactor Using Neural Network
...Show More Authors

 

The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 08 2022
Journal Name
Al-khwarizmi Engineering Journal
Performance Prediction in EDM Process for Al 6061 Alloy Using Response Surface Methodology and Genetic Algorithm
...Show More Authors

The Electric Discharge (EDM) method is a novel thermoelectric manufacturing technique in which materials are removed by a controlled spark erosion process between two electrodes immersed in a dielectric medium. Because of the difficulties of EDM, determining the optimum cutting parameters to improve cutting performance is extremely tough. As a result, optimizing operating parameters is a critical processing step, particularly for non-traditional machining process like EDM. Adequate selection of processing parameters for the EDM process does not provide ideal conditions, due to the unpredictable processing time required for a given function. Models of Multiple Regression and Genetic Algorithm are considered as effective methods for determ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 01 2017
Journal Name
2017 Annual Conference On New Trends In Information & Communications Technology Applications (ntict)
Automatic Iraqi license plate recognition system using back propagation neural network (BPNN)
...Show More Authors

View Publication
Scopus (9)
Crossref (7)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Aug 01 2017
Journal Name
Journal Of Engineering
Rigid trunk sewer deterioration prediction models using multiple discriminant and neural network models in Baghdad city, Iraq
...Show More Authors

The deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the

... Show More
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
Rigid Trunk Sewer Deterioration Prediction Models using Multiple Discriminant and Neural Network Models in Baghdad City, Iraq
...Show More Authors

View Publication Preview PDF
Publication Date
Wed Sep 20 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modified Radial Based Neural Network for Clustering and Routing Optimal Path in Wireless Network
...Show More Authors

Several methods have been developed for routing problem in MANETs wireless network, because it considered very important problem in this network ,we suggested proposed method based on modified radial basis function networks RBFN and Kmean++ algorithm. The modification in RBFN for routing operation in order to find the optimal path between source and destination in MANETs clusters. Modified Radial Based Neural Network is very simple, adaptable and efficient method to increase the life time of nodes, packet delivery ratio and the throughput of the network will increase and connection become more useful because the optimal path has the best parameters from other paths including the best bitrate and best life link with minimum delays. The re

... Show More
View Publication Preview PDF