Preferred Language
Articles
/
joe-141
Application of Artificial Neural Network for Predicting Iron Concentration in the Location of Al-Wahda Water Treatment Plant in Baghdad City
...Show More Authors

Iron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies.  In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model could be used to predict future iron concentrations as the results from the verification of the ANN model for years 2012 and 2013 indicated good accuracy with a coefficient of determination R2 = 0.8965.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Https://www.researchgate.net/journal/university-of-baghdad-engineering-journal-1726-4073
Evaluation of Drinking Water Quality in Al Wahda Treatment Plant in Baghdad City- Iraq
...Show More Authors

This study aims to evaluate drinking water quality at the Al Wahda plant (WTP) in Baghdad city. A conventional water treatment plant with an average flow rate of 72.82 MLD. Water samples were taken from the influent and effluent of the treatment plant and analyzed for some physicochemical and biological parameters during the period from June to November 2020. The results of the evaluation indicate that treated water has almost the same characteristics as raw water; in other terms, the plant units do not remove pollutants as efficiently as intended. Based on this, the station appears to be nothing more than a series of water passage units. However, apart from Total dissolved solids, the mean values of all parameters in the study were

... Show More
Crossref (1)
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Engineering
Evaluation of Drinking Water Quality in Al Wahda Treatment Plant in Baghdad City- Iraq
...Show More Authors

This study aims to evaluate drinking water quality at the Al Wahda plant (WTP) in Baghdad city. A conventional water treatment plant with an average flow rate of 72.82 MLD. Water samples were taken from the influent and effluent of the treatment plant and analyzed for some physicochemical and biological parameters during the period from June to November 2020. The results of the evaluation indicate that treated water has almost the same characteristics as raw water; in other terms, the plant units do not remove pollutants as efficiently as intended. Based on this, the station appears to be nothing more than a series of water passage units. However, apart from Total dissolved solids, the mean values of all parameters in th

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
River Water Salinity Impact on Drinking Water Treatment Plant Performance Using Artificial neural network
...Show More Authors

The river water salinity is a major concern in many countries, and salinity can be expressed as total dissolved solids. So, the water salinity impact of the river is one of the major factors effects of water quality. Tigris river water salinity increase with streamline and time due to the decrease in the river flow and dam construction from neighboring countries. The major objective of this research to developed salinity model to study the change of salinity and its impact on the Al-Karkh, Sharq Dijla, Al-Karama, Al-Wathba, Al-Dora, and Al-Wihda water treatment plant along Tigris River in Baghdad city using artificial neural network model (ANN). The parameter used in a model built is (Turbidity, Ec, T.s, S.s, and TDS in)

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Artificial neural network model for predicting the desulfurization efficiency of Al-Ahdab crude oil
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (6)
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Evaluation the turbidity removal efficiency in Al-Wahda water treatment plant using statistical indicators
...Show More Authors
Abstract<p>Most of drinking water consuming all over the world has been treated at the water treatment plant (WTP) where raw water is abstracted from reservoirs and rivers. The turbidity removal efficiency is very important to supply safe drinking water. This study is focusing on the use of multiple linear regression (MLR) and artificial neural network (ANN) models to predict the turbidity removal efficiency of Al-Wahda WTP in Baghdad city. The measured physico-chemical parameters were used to determine their effect on turbidity removal efficiency in various processes. The suitable formulation of the ANN model is examined throughout many preparations, trials, and steps of evaluation. The predict</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Dec 20 2018
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
EVALUATION OF THE EFFICIENCY OF AL-WAHDA PLANT IN PURIFICATION OF POTABLE WATER: EVALUATION OF THE EFFICIENCY OF AL-WAHDA PLANT IN PURIFICATION OF POTABLE WATER
...Show More Authors

Water samples were collected from output of water for Al-Wahda plant where located in al-karrada area in Baghdad city to study water contamination with bacteria, fungi and Algae. The study lasted one year started on August, 2016 to July,2017.Results were acquired according to two tests performed, the first is biological test included total coliform,E.coli, pseudomonas aeruginosa, total fungi, Diatom and non Diatom Algae and the second is physiochemical test included temperature, turbidity and residual chlorine. The results of bacteria were within the permitted specification in the Iraqi standards no. 14/2270 for the year 2015 except August was exceeded the permitted standard for total coliform, it was 1.1< cell/100 ml.Total Fungi, Dia

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Index for the treated water from WTPs on Al-Karakh side of Baghdad City using Artificial Neural Network (ANN) technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For

... Show More
Publication Date
Sat Aug 01 2020
Journal Name
Journal Of Engineering Science And Technology (jestec)
Influence of A River Water Quality on The Efficiency of Water Treatment Using Artificial Neural Network
...Show More Authors

Tigris River is the lifeline that supplies a great part of Iraq with water from north to south. Throughout its entire length, the river is battered by various types of pollutants such as wastewater effluents from municipal, industrial, agricultural activities, and others. Hence, the water quality assessment of the Tigris River is crucial in ensuring that appropriate and adequate measures are taken to save the river from as much pollution as possible. In this study, six water treatment plants (WTPs) situated on the two-banks of the Tigris within Baghdad City were Al Karkh; Sharq Dijla; Al Wathba; Al Karama; Al Doura, and Al Wahda from northern Baghdad to its south, that selected to determine the removal efficiency of turbidity and

... Show More
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
An Artificial Neural Network for Predicting Rate of Penetration in AL- Khasib Formation – Ahdeb Oil Field
...Show More Authors

The main objective of this study is to develop a rate of penetration (ROP) model for Khasib formation in Ahdab oil field and determine the drilling parameters controlling the prediction of ROP values by using artificial neural network (ANN).

     An Interactive Petrophysical software was used to convert the raw dataset of transit time (LAS Readings) from parts of meter-to-meter reading with depth. The IBM SPSS statistics software version 22 was used to create an interconnection between the drilling variables and the rate of penetration, detection of outliers of input parameters, and regression modeling. While a JMP Version 11 software from SAS Institute Inc. was used for artificial neural modeling.

&nb

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Aug 07 2018
Journal Name
Indian Journal Of Natural Sciences
Evaluation of Drinking Water Quality in Al Wathba Treatment Plant in Baghdad City-Iraq
...Show More Authors