Tigris River is the lifeline that supplies a great part of Iraq with water from north to south. Throughout its entire length, the river is battered by various types of pollutants such as wastewater effluents from municipal, industrial, agricultural activities, and others. Hence, the water quality assessment of the Tigris River is crucial in ensuring that appropriate and adequate measures are taken to save the river from as much pollution as possible. In this study, six water treatment plants (WTPs) situated on the two-banks of the Tigris within Baghdad City were Al Karkh; Sharq Dijla; Al Wathba; Al Karama; Al Doura, and Al Wahda from northern Baghdad to its south, that selected to determine the removal efficiency of turbidity and the water quality index used to assess the quality of water for drinking purposes, in addition to finding the model based on past information to predict the quality of treated wastewater produced in each WTP using an artificial neural network (ANN) approach. The selected parameters for this study were turbidity, total hardness, total solids, suspended solids, and alkalinity. The results showed that all the WTPs possessed a high rate of efficiency in the removal of turbidity from raw water. Also, the results of the water quality index for all WTPs were classified over a study period of three years from 2015 to 2017 as being a good water quality and based on these results, the water treatment plants can be considered to be doing efficient water treatment process. The ANN model has been found at all WTPs to have a coefficient of determination (R2) for expected models was more than 0.7 to provide a WQI prediction tool that can be used with a moderate level of predictive acceptance to describe the suitability of WTP water quality for drinking purposes.
The river water salinity is a major concern in many countries, and salinity can be expressed as total dissolved solids. So, the water salinity impact of the river is one of the major factors effects of water quality. Tigris river water salinity increase with streamline and time due to the decrease in the river flow and dam construction from neighboring countries. The major objective of this research to developed salinity model to study the change of salinity and its impact on the Al-Karkh, Sharq Dijla, Al-Karama, Al-Wathba, Al-Dora, and Al-Wihda water treatment plant along Tigris River in Baghdad city using artificial neural network model (ANN). The parameter used in a model built is (Turbidity, Ec, T.s, S.s, and TDS in)
... Show MoreSodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-201
... Show MoreAssessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem
This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer
... Show MoreThe assessment of a river water’ quality is an essential procedure of monitor programs and is used to collect basic environmental data. The management of integrated water resources in a sustainable method is also necessary to allow future generations to meet their water needs. The main objective of this research is to assess the effect of the Diyala River on Tigris River water quality using Geographic Information System (GIS) technique. Water samples have been collected monthly from November 2017 to April 2018 from four selected locations in Tigris and Diyala Rivers using the grab sampling method. Fourteen parameters were studied which are Turbidity, pH, Dissolved Oxygen, Biological Oxygen Demand, Electrical Conductivi
... Show MoreThe Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The
... Show MoreThe Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The develope
... Show MoreThe assessment of a river water’ quality is an essential procedure of monitor programs and isused to collect basic environmental data. The management of integrated water resources in asustainable method is also necessary to allow future generations to meet their water needs. Themain objective of this research is to assess the effect of the Diyala River on Tigris River waterquality using Geographic Information System (GIS) technique. Water samples have beencollected monthly from November 2017 to April 2018 from four selected locations in Tigris andDiyala Rivers using the grab sampling method. Fourteen parameters were studied which areTurbidity, pH, Dissolved Oxygen, Biological Oxygen Demand, Electrical Conductivity, TotalDissolved Solids,
... Show More