Preferred Language
Articles
/
DRa0IocBVTCNdQwCTjoI
Rigid trunk sewer deterioration prediction models using multiple discriminant and neural network models in Baghdad city, Iraq

The deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the multiple discriminant model (MDM) and neural network model (NNM). Zublin trunk sewer in Baghdad city was selected as a case study. The deterioration model based on the NNDM provide the highest overall prediction efficiency which could be attributed to its inherent ability to model complex processes. The MDDM provided relatively low overall prediction efficiency, this may be due to the restrictive assumptions by this model. For the NNDM the confusion matrix gave overall prediction efficiency about 87.3% for model training and 70% for model validation, and the overall conclusion from these models may predict that Zublin trunk sewer is of a poor condition.

Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
View Publication Preview PDF
Publication Date
Thu Jan 03 2019
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
Condition Prediction Models of Deteriorated Trunk Sewer Using Multinomial Logistic Regression and Artificial Neural Network

Sewer systems are used to convey sewage and/or storm water to sewage treatment plants for disposal by a network of buried sewer pipes, gutters, manholes and pits. Unfortunately, the sewer pipe deteriorates with time leading to the collapsing of the pipe with traffic disruption or clogging of the pipe causing flooding and environmental pollution. Thus, the management and maintenance of the buried pipes are important tasks that require information about the changes of the current and future sewer pipes conditions. In this research, the study was carried on in Baghdad, Iraq and two deteriorations model's multinomial logistic regression and neural network deterioration model NNDM are used to predict sewers future conditions. The results of the

... Show More
Publication Date
Sun Jan 27 2019
Journal Name
Civil Engineering Journal
Prediction of Sediment Accumulation Model for Trunk Sewer Using Multiple Linear Regression and Neural Network Techniques

Sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated.  For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers propos

... Show More
Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Prediction of Municipal Solid Waste Generation Models Using Artificial Neural Network in Baghdad city, Iraq

The importance of Baghdad city as the capital of Iraq and the center of the attention of delegations because of its long history is essential to preserve its environment. This is achieved through the integrated management of municipal solid waste since this is only possible by knowing the quantities produced by the population on a daily basis. This study focused to predicate the amount of municipal solid waste generated in Karkh and Rusafa separately, in addition to the quantity produced in Baghdad, using IBM SPSS 23 software. Results that showed the average generation rates of domestic solid waste in Rusafa side was higher than that of Al-Karkh side because Rusafa side has higher population density than Al-Karkh side. T

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
Deterioration Model for Sewer Network Asset Management in Baghdad City (case study Zeppelin line)

Asset management involves efficient planning of economic and technical performance characteristics of infrastructure systems. Managing a sewer network requires various types of activities so the network can be able to achieve a certain level of performance. During the lifetime of the network various components will start to deteriorate leading to bad performance and can damage the infrastructure. The main objective of this research is to develop deterioration models to provide an assessment tool for determining the serviceability of the sewer networks in Baghdad city the Zeppelin line was selected as a case study, as well as to give top management authorities the appropriate decision making. Different modeling techniques

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 03 2018
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Condition assessment and rehabilitation for trunk sewer deterioration based on Semi-Markov model

An accurate assessment of the pipes’ conditions is required for effective management of the trunk sewers. In this paper the semi-Markov model was developed and tested using the sewer dataset from the Zublin trunk sewer in Baghdad, Iraq, in order to evaluate the future performance of the sewer. For the development of this model the cumulative waiting time distribution of sewers was used in each condition that was derived directly from the sewer condition class and age data. Results showed that the semi-Markov model was inconsistent with the data by adopting ( 2 test) and also, showed that the error in prediction is due to lack of data on the sewer waiting times at each condition state which can be solved by using successive conditi

... Show More
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Engineering Science And Technology (jestec)
Optimum Operation Management Effect of Main Sewage Pumping Stations on Trunk Sewer Deterioration

Sewage pumping stations are considered an important part of any sewerage system. Pumps failure in these stations means that the pumps are unable to work at the design requirement (flow capacity and head) and that may cause sewer overflow and flooding leading to sewer deterioration. In this paper, two main sewage pumping stations in Baghdad city were selected as case studies, Al- Habibia and Al-Ghazali located on Zublin trunk sewer 3000 mm and Baghdad trunk sewer 1200-2100 respectively. This study focused mainly on the operation of main sewage pumping stations and their effect, both directly and indirectly, on changing hydraulic properties, which leads to an increase in the deterioration of sewage pipes. The hydraulic analysis was co

... Show More
Publication Date
Tue Dec 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Using Artificial Neural Network Models For Forecasting & Comparison

The Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Engineering Science And Technology (jestec)
Analysis Of Sedimentation In Trunk Sewer With Laboratory Investigation Of Sewage Sediment Characteristics In Baghdad City

Sediment accumulated in sewers is a major concern source as it induces numerous operational and environmental problems. For instance, during wet weather flow, the re-suspension of this sediment accompanied by the combined sewer overflow may cause huge pollutant load to the receiving water body. The characteristics of the sewer sediment are important as it shapes its behaviour and determines the extent of the pollution load. In this paper, an investigation of sewer sediment and its characterization is done for a case study in Baghdad city. Sediment depth covers more than 50% of the sewer cross-sectional area; several operational causes are comprised to cause this huge depths of sediment depositions. The testing and analysis of the s

... Show More