Preferred Language
Articles
/
joe-2210
Numerical Study of Optimum Configuration of Unconventional Airfoil with Steps and Rotating Cylinder for Best Aerodynamics Performance
...Show More Authors

Numerical study of separation control on symmetrical airfoil, four digits (NACA

0012) by using rotating cylinder with double steps on its upper surface based on the computation of Reynolds-average Navier- Stokes equations was carried out to find the optimum configuration of unconventional airfoil for best aerodynamics performance. A model based on collocated Finite Volume Method was developed to solve the governing equations on a body-fitted coordinate system. A revised (k-w) model was proposed as a known turbulence model. This model was adapted to simulate the control effects of rotating cylinder. Numerical solutions were performed for flow around unconventional airfoil with cylinder to main stream velocities ratio in the range of 1 to 4 and for various positions of the steps on the airfoil from the leading edge, 0.1c, 0.2c, 0.3c, 0.4c, 0.5c for the first step and 0.5c, 0.6c, 0.7c, 0.8c for the second step with constant step depth and length of 0.03c and 0.125c respectively. Reynolds number of 700,000 which was based on the cord length (c), with angle of attacks 0, 5, 8, 10, 12, 15 degrees was considered for the assessment of the unconventional airfoil performance. The numerical investigation showed that the optimum configuration for the unconventional airfoil was found to be at velocities ratio (U/U∞=4) with the steps positions at 0.5c and 0.8c for best airfoil performance.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Numerical Study of Piled Raft Foundation in Non-Homogeneous Soil Using Finite Element Method
...Show More Authors

This paper analyzes a piled-raft foundation on non-homogeneous soils with variable layer depth percentages. The present work aims to perform a three-dimensional finite element analysis of a piled-raft foundation subjected to vertical load using the PLAXIS 3D software. Parametric analysis was carried out to determine the effect of soil type and initial layer thickness. The parametric study showed that increasing the relative density from 30 % to 80 % of the upper sand layer and the thickness of the first layer has led to an increase in the ultimate load and a decrease in the settlement of piled raft foundations for the cases of sand over weak soil.  In clay over weak soil, the ultimate load of the piled raft foundation w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Journal Of Engineering
Assessment of Bearing Capacity and Settlement Characteristics of Organic Soil Reinforced by Dune Sand and Sodium Silicate Columns: A Numerical Study
...Show More Authors

Organic soil is problematic soils in geotechnical engineering due to its properties, as it is characterized by high compressibility and low bearing capacity. Therefore, several geotechnical techniques tried to stabilize and improve this soil type. In this study, sodium silicate was used to stabilize sand dune columns. The best sodium silicate concentration (9%) was used, and the stabilized sand dune columns were cured for seven days. The results for this soil were extracted using a numerical analysis program (Plaxis 3D, 2020).In the case of studying the effect of (L/D) (where ‘’L” and ‘’D’’ length and diameter of sand dune columns) of a single column of sand dunes stabilized with sodium silicate with a diff

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
The Optimum Reinforcement Layer Number for Soil under the Ring Footing Subjected to Inclined Load
...Show More Authors

The primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent o

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
The Optimum Reinforcement Layer Number for Soil under the Ring Footing Subjected to Inclined Load
...Show More Authors

The primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent of the

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Apr 03 2025
Journal Name
Aip Conference Proceedings
Determining the Optimum Reference Orbits Using Lagrange’s Series for Geocentric Satellite in Low Earth Orbit
...Show More Authors

The Taylor series is defined by the f and g series. The solution to the satellite's equation of motion is expanding to generate Taylor series through the coefficients f and g. In this study, the orbit equation in a perifocal system is solved using the Taylor series, which is based on time changing. A program in matlab is designed to apply the results for a geocentric satellite in low orbit (height from perigee, hp= 622 km). The input parameters were the initial distance from perigee, the initial time, eccentricity, true anomaly, position, and finally the velocity. The output parameters were the final distance from perigee and the final time values. The results of radial distance as opposed to time were plotted for dissimilar times in

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Experimental and Numerical Study on CFRP-Confined Square Concrete Compression Members Subjected to Compressive Loading
...Show More Authors

    

Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.

The aim of this research is to study experime

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Experimental and Numerical Study on CFRP-Confined Square Concrete Compression Members Subjected to Compressive Loading
...Show More Authors

     Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software. The aim of this research is to study experimentally and numerically, the beha

... Show More
Crossref (4)
Crossref
Publication Date
Tue Mar 03 2020
Journal Name
International Journal Of Psychosocial Rehabilitation
Administrative performance and its relationship with the cognitive style (rigidity - flexibility) for management body members of the sport clubs
...Show More Authors

Publication Date
Thu Feb 01 2024
Journal Name
Journal Of Thermal Analysis And Calorimetry
Heat transfer and fluid flow characteristics over a backward-facing step (BFS) containing square-rectangular ribs integrated as forward-facing steps (FFS)
...Show More Authors

View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2019
Journal Name
Journal Of Engineering
Numerical Study of Fluid Flow and Heat Transfer Characteristics in Solid and Perforated Finned Heat Sinks Utilizing a Piezoelectric Fan
...Show More Authors

Numerical study is adapted to combine between piezoelectric fan as a turbulent air flow generator and perforated finned heat sinks. A single piezoelectric fan with different tip amplitudes placed eccentrically at the duct entrance. The problem of solid and perforated finned heat sinks is solved and analyzed numerically by using Ansys 17.2 fluent, and solving three dimensional energy and Navier–Stokes equations that set with RNG based k−ε scalable wall function turbulent model. Finite volume algorithm is used to solve both phases of solid and fluid. Calculations are done for three values of piezoelectric fan amplitudes 25 mm, 30 mm, and 40 mm, respectively. Results of this numerical study are compared with previous b

... Show More
View Publication Preview PDF
Crossref (1)
Crossref