This research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COV
... Show MoreThe aim of our study is to solve a nonlinear epidemic model, which is the COVID-19 epidemic model in Iraq, through the application of initial value problems in the current study. The model has been presented as a system of ordinary differential equations that has parameters that change with time. Two numerical simulation methods are proposed to solve this model as suitable methods for solving systems whose coefficients change over time. These methods are the Mean Monte Carlo Runge-Kutta method (MMC_RK) and the Mean Latin Hypercube Runge-Kutta method (MLH_RK). The results of numerical simulation methods are compared with the results of the numerical Runge-Kutta 4th order method (RK4) from 2021 to 2025 using the absolute error, which prove
... Show MoreBecause the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat
... Show MoreIn the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a
... Show MoreThe main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreThe aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.
After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show More