In this study, a three-dimensional finite element analysis using ANSYS 12.1 program had been employed to simulate simply supported reinforced concrete (RC) T-beams with multiple web circular openings subjected to an impact loading. Three design parameters were considered, including size, location and number of the web openings. Twelve models of simply supported RC T-beams were subjected to one point of transient (impact) loading at mid span. Beams were simulated and analysis results were obtained in terms of mid span deflection-time histories and compared with the results of the solid reference one. The maximum mid span deflection is an important index for evaluating damage levels of the RC beams subjected to impact loading. Three experimental T-beams were considered in this study for calibration of the program. All models had an identical cross-section and span similar to those of the experimental beams. The diameter of the openings of the experimental beams was 110 mm. Three other diameters were varied (50, 80 and 130) mm. The location of the face of the opening with respect to the location of impact loading was investigated (the face of the opening at distance varied 0d, 0.5d, 1d and 1.5d from the location of loading, where d is the effective depth) and the number of web openings was varied (2,4 and 6) openings. All modeled beams subjected to dropping mass of 24.5 kg with height of drop of 250 mm (as for the experimental beams). Results obtained from this study showed that the behavior of beams with circular openings of diameter equal to 22% the web depth has a small effect on the response of the RC T-beams. On the other hand, introducing circular openings with a diameter equal to 35% and 57% of the web depth (80 and 130 mm) increases the maximum mid span deflection by 23% and 43% respectively. Results also showed that, openings with a distance greater than or equal to 1.5 d from the location of impact loading have no effect on the deflection of the RC beams.
Several stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti
... Show MoreIn this work, a comparative analysis for the behavior and pattern of the variations of the IF2 and T Ionospheric indices was conducted for the minimum and maximum years of solar cycles 23 and 24. Also, the correlative relationship between the two ionospheric indices was examined for the seasonal periods spanning from August 1996 to November 2008 for solar cycle 23 and from December 2008 to November 2019 for solar cycle 24. Statistical calculations were performed to compare predicted values with observed values for the selected indices during the tested timeframes. The study's findings revealed that the behavior of the examined indices exhibited almost similar variations throughout the studied timeframe. The seasonal variations were
... Show MoreIn line with the advancement of hardware technology and increasing consumer demands for new functionalities and innovations, software applications grew tremendously in term of size over the last decade. This sudden increase in size has a profound impact as far as testing is concerned. Here, more and more unwanted interactions among software systems components, hardware, and operating system are to be expected, rendering increased possibility of faults. To address this issue, many useful interaction-based testing techniques (termed t-way strategies) have been developed in the literature. As an effort to promote awareness and encourage its usage, this chapter surveys the current state-of-the-art and reviews the state-of-practices in t
... Show MoreIn line with the advancement of hardware technology and increasing consumer demands for new functionalities and innovations, software applications grew tremendously in term of size over the last decade. This sudden increase in size has a profound impact as far as testing is concerned. Here, more and more unwanted interactions among software systems components, hardware, and operating system are to be expected, rendering increased possibility of faults. To address this issue, many useful interaction-based testing techniques (termed t-way strategies) have been developed in the literature. As an effort to promote awareness and encourage its usage, this chapter surveys the current state-of-the-art and reviews the state-of-practices in t
... Show MoreThroughout this paper, three concepts are introduced namely stable semisimple modules, stable t-semisimple modules and strongly stable t-semisimple. Many features co-related with these concepts are presented. Also many connections between these concepts are given. Moreover several relationships between these classes of modules and other co-related classes and other related concepts are introduced.
This study was chosen because of the entry of our regions into the seismic zone recently, where Diyala governorate was hit by the Halabja earthquake in 2017 by 7.3Mw. Therefore, the impact of earthquakes will be studied on the AL-Mafraq bridge foundations piles located in Iraq- east of Baghdad in Diyala Governorate and the extent of its resistance to the Halabjah, EL-Centro, and Kobe earthquakes with acceleration 0.1g, 0.34g, and 0.58g respectively. After modeling and performing the analysis by using Midas Gts-Nx software, the settlement (mm) results at nine nodes (four nodes for the pile cap and five nodes for the piles) were obtained for each of Halabjah, EL-Centro, and Kobe earthquakes to know the resistance of the br
... Show MoreIn this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A compari
In this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A comparison between numerical and experimental data, illustrated
... Show MoreIn this paper, a methodology is presented for determining the stress and strain in structural concrete sections, also, for estimating the ultimate combination of axial forces and bending moments that produce failure. The structural concrete member may have a cross-section with an arbitrary configuration, the concrete region may consist of a set of subregions having different characteristics (i.e., different grades of concretes, or initially identical, but working with different stress-strain diagrams due to the effect of indirect reinforcement or the effect of confinement, etc.). This methodology is considering the tensile strain softening and tension stiffening of concrete in additio