Pultruded materials made of Fiber-Reinforced Polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, etc. FRP materials are starting to compete with steel as structural materials owing to their great resistance, low self-weight, and cheap maintenance costs, especially in corrosive conditions. This study aims to evaluate the effectiveness of a novel concrete Composite Column (CC) using Encased I-Section (EIS) as a reinforcement in contrast to traditional steel bars by using Glass Fiber-Reinforced Polymer (GFRP) as I-section (CC-EIS) to evaluate the effectiveness of the hybrid columns which have been built by combining GFRP profiles with concrete columns. To achieve the aims of this study, nine circular columns with a diameter of 150 mm and a height of 1000 mm were cast with compression strength equal to 42.4 MPa at the test day. The research involved three different types of reinforcement: Hybrid circular columns with GFRP I-section and 1% reinforcement ratio of steel bars, Hybrid circular columns with steel I-section and 1% reinforcement ratio of steel bars (the cross-section area of the I-section was the same for GFRP and for steel), and a reference column without an I-section. This study investigates the ultimate capacity, axial and lateral deformation, and failure mode of the circular columns under different loading conditions: concentric, eccentric (with eccentricities of 25 mm), and flexural loading. The results showed that the ultimate capacity of the composite columns using either encased steel I-section or GFRP I-section was higher than the traditional columns under all loading conditions. The concentric tested specimens, with steel I-section and with GFRP I-section, exceeded the ultimate strength of the reference specimen by 8.9% and 2.9%, respectively. Specimens with steel I-section and GFRP I-section achieved 11.9% and 9.7% higher ultimate strength than the reference specimens under a compression load of 25 mm eccentricity. Specimens with steel I-section and the specimens with GFRP I-section achieved ultimate strengths of 114.3% and 36.6% under flexural loading testing.
This paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation
... Show MoreEncasing glass fiber reinforced polymer (GFRP) beam with reinforced concrete (RC) improves stability, prevents buckling of the web, and enhances the fire resistance efficiency. This paper provides experimental and numerical investigations on the flexural performance of RC specimens composite with encased pultruded GFRP I-sections. The effect of using shear studs to improve the composite interaction between the GFRP beam and concrete was explored. Three specimens were tested under three-point loading. The deformations, strains in the GFRP beams, and slippages between the GFRP beams and concrete were recorded. The embedded GFRP beam enhanced the peak loads by 65% and 51% for the composite specimens with and without shear connectors,
... Show MoreThere is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP
... Show MoreIn this study, the effect of glass fiber reinforced polymer (GFRP) section and compressive strength of concrete in composite beams under static and low velocity impact loads was examined. Modeling was performed and the obtained results were compared with the test results and their compatibility was evaluated. Experimental tests of four composite beams were carried out, where two of them are control specimen with 20 MPa compressive strength of concrete deck slab and 50 MPa for other. Bending characteristics were affected by the strength of concrete under impact loading case, as it increased maximum impact force and damping time at a ratio of 59% and reduced the damping ratio by 47% compared to the reference hybrid beam. Under stat
... Show MoreFiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the f
... Show MoreIn this paper, fire resistance and residual capacity tests were carried out on encased pultruded glass fiber-reinforced polymer (GFRP) I-beams with high-strength concrete beams. The specimens were loaded concurrently under 25% of the ultimate load and fire exposure (an increase in temperature of 700 °C) for 70 min. Subsequently, the fire-damaged specimens were allowed to cool and then were loaded statically until failure to explore the residual behaviors. The effects of using shear connectors and web stiffeners on the residual behavior were investigated. Finite Element (FE) analysis was developed to simulate the encased pultruded GFRP I-beams under the effect of fire loading. The thermal analyses were performed using the general-pu
... Show MoreIn this paper, numerical and experimental studies on the elastic behavior of glass fiber reinforced polymer (GFRP) with stiffeners in the GFRP section's web (to prevent local buckling) are presented. The GFRP profiles were connected to the concrete deck slab by shear connectors. Two full-scale simply supported composite beams (with and without stiffeners) were tested under impact load (three-point load) to assess its structural response. The results proved that the maximum impact force, maximum deflection, damping time, and damping ratio of the composite beam were affected by the GFRP stiffeners. The experimental results indicated that the damping ratio and deflection were diminished compare
... Show MoreIn this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners,
... Show More