Preferred Language
Articles
/
joe-2098
Bearing Capacity of Shallow Footing on Compacted Filling Dune Sand Over Reinforced Gypseous Soil
...Show More Authors

Existence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within the tested range, was found to be almost equal to the width of foundation. Therefore, under this depth, the soil was reinforced with geogrid
and geotextile. It can be shown that (Collapse Settlement Reduction Factor) increases to (72%) when using two layers of geogrid and one layer of geotextile under depth of replacement equal to the width of footing. In addition, the results showed that the bearing capacity increases to (1.5-2.0)  time under concentric loads and (2.5-3) under eccentric loads after replacement and reinforcement of gypseous soil

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jul 01 2018
Journal Name
International Journal Of Geotechnical Earthquake Engineering
Impact Induced Responses of Saturated and Dry Dense Sand
...Show More Authors

The present article includes an experimental study of the behavior of dry and saturated dense sandy soil under the action of a single impulsive load. Dry and saturated dense sand models were tested under impact loads. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of dense soils were evaluated at surface of soil under impact load. These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and the displacement at different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A waterproof, and low capacity acceleration tran

... Show More
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
Kinetic Studies of Wastewater Purification Using Local Sand Samples in Erbil, Kurdistan
...Show More Authors

      This research describes a straightforward procedure for extracting the pigment of Methylene Blue (MB) dye from aqueous solutions by utilizing a low-cost, safe, natural, and national source. Batch adsorption experiments were carried out to determine contact time, adsorbent dose, and the starting concentration of the adsorbate. For the analysis, a UV spectrophotometer was employed. Dye adsorption equilibrium was obtained after 120 minutes of contact time. Temkin, Langmuir, and Freundlich isotherm adsorption were used at solution concentrations of (3, 4, 6, and 8) mg/l. Adsorption data is used to predict the pseudo first and pseudo second order kinetic equations, Elovich kinetic models, and intra-particle diffusion using pseudo f

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Mon Sep 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Phenol Compounds from Aqueous Solution Using Coated Sand Filter Media
...Show More Authors

Coated sand (CS) filter media was investigated to remove phenol and 4-nitrophenol from aqueous solutions in batch experiments. Local sand was subjected to surface modification as impregnated with iron. The influence of process variables represented by solution pH value, contact time, initial concentration and adsorbent dosage on removal efficiency of phenol and 4-nitrophenol onto CS was studied. Batch studies were performed to evaluate the adsorption process, and it was found that the Langmuir isotherm effectively fits the experimental data for the adsorbates better than the Freundlich model with the CS highest adsorption capacity of 0.45 mg/g for 4-nitrophenol and 0.25 mg/g for phenol. The CS was found to adsorb 85% of 4-nitrophenol and

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Mineralogical and geochemical aspects of sand dunes in Missan Governorate, Southeastern Iraq
...Show More Authors

        Twenty sand samples were collected from the sand dunes of Missan fields, Southeastern Iraq. Grain size distribution, mineralogical and chemical composition were studied for the total, medium, and fine-size sand fractions. The grain size analysis shows that the sand is the main component, followed by silt and trace of clay. The predominant grain size of sand is 0.250 to 0.500 mm, which forms more than 57.28 %, which indicates that these dunes were formed under the influence of relatively strong winds and the sedimentary material is close to the source. The light components are quartz, feldspar, and different rock fragments, while the heavy mineral assemblages are composed of opaque minerals, chlorite, mica, and amphiboles.

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 02 2016
Journal Name
International Journal Of Engineering Papers
Assessing Environmental Impact on Asphalt Stabilized Subgrade Soil
...Show More Authors

Assessment of the in service behavior of asphalt stabilized subgrade soil under environmental impact has got little attention by the research workers. However, the sustainability of the roadway depends mainly on the welfare of its subgrade soil condition. In this work, Gypseous soil was stabilized with asphalt emulsion for subgrade usage, the durability of the mixture has been assessed in term of its ability to maintain the compressive strength when practicing the environmental impacts. Specimens of 38 mm in diameter , and 76 mm in height have been prepared with various water-asphalt percentages, and subjected to 30 cycles of (freezing-thawing), (heating-cooling) and (wetting-drying) processes. Specimens have been tested for unconfined comp

... Show More
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Helical Piles Embedded in Expansive Soil Overlaying Sandy Soil
...Show More Authors

In this study, the behavior of square helical piles models (5×5) mm2 embedded in expansive soil bed overlaying a layer of sandy soil was investigated. The sand layer 200mm thickness was compacted into four sub layers in a steel container with diameter 400mm in size. Sandy soil layer was compacted into two relative densities 40% and 80%. The bed of ثءحties 40% and 80%.The bed of o00mm in size.Sandy soil layer was compacted into two relative densities 40% and 80%.The bed of oexpansive soil 300mm thickness was compacted into six sub layers on sandy soil layer. Model tests are performed with helical pile length 350mm, 400mm and 450mm and with helix diameter 15mm and 20mm. Also, one helix and double helix were

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Concrete strength development by using magnetized water in normal and self-compacted concrete
...Show More Authors
Abstract<p>The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and </p> ... Show More
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Concrete strength development by using magnetized water in normal and self-compacted concrete
...Show More Authors
Abstract<p>The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and </p> ... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Engineering
Recycled Concrete Aggregated for the use in Roller Compacted Concrete: A Literature Review
...Show More Authors

The using of recycled aggregates from construction and demolition waste (CDW) can preserve natural aggregate resources, reduce the demand for landfill, and contribute to a sustainable built environment. Concrete demolition waste has been proven to be an excellent source of aggregates for new concrete production. At a technical, economic, and environmental level, roller compacted concrete (RCC) applications benefit various civil construction projects. Roller Compacted Concrete (RCC) is a homogenous mixture that is best described as a zero-slump concrete placed with compacting equipment, uses in storage areas, dams, and most often as a basis for rigid pavements. The mix must be sufficiently dry to support

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Manufacture of Load Bearing Concrete Masonry Units Using Waste Demolishing Material
...Show More Authors

The presence of construction wastes such as clay bricks, glass, wood, plastic, and others in large quantities causes serious environmental problems in the world. Where these wastes can be used to preserve the natural resources used in construction and reduce the impact of this problem on the environment, it also works to reduce the problem of high loads of concrete blocks. Clay bricks aggregate (AB) can be recycled as coarse aggregate and replaced with volumetric proportions of coarse aggregate by ( 5% and 10%), as well as the use of clay brick powder (PB) by replacing its weight of cement (5% and 10%) and reduced in the manufacture of concrete blocks (blocks). Four mixtures will be prepared and tested to learn how to re

... Show More
View Publication Preview PDF
Crossref (3)
Crossref