The geochemical study of the Oligocene-Miocene succession Anah, Euphrates, and Fatha formations, western Iraq, was carried out to discriminate their depositional environments. Different major and trace patterns were observed between these formations. The major elements (Ca, Mg, Fe, Mn, K, and Na) and trace elements (Li, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Cs, Ba, Hf, W, Pb, Th, and U) are a function of the setting of the depositional environments. The reefal facies have lower concentrations of MgO, Li, Cr, Co, Ni, Ga, Rb, Zr, and Ba than marine and lagoonal facies but have higher concentrations of CaO, V, and Sr than it. Whereas dolomitic limestone facies are enriched V, and U while depletion in Li, Cr, Ni, Ga, Rb, Sr, Zr, Ba, and Pb Conversely, the lagoonal facies are rich in clay minerals and associated trace elements Li, V, Cr, Co, Ni, Cu, Ga, Rb, Zr, Ba, and Pb.
The aim of this study is to investigate the sedimentation environments and diagenetic processes of the Ibrahim Formation (Oligocene-early Miocene) in Zurbatiya, eastern Iraq. The Ibrahim Formation is comprised mostly of clayey micrite and skeletal grains composed of planktonic foraminifera, calcispheres, radiolaria, and benthic foraminifera. Glauconite and pyrite were documented in some restricted zones of this formation; they reflect quiet and reducing conditions. Radiolaria were identified in Late-Oligocene which was not known previously at this age regionally in carbonate formations of the Arabian Plate (AP). Mudstone, wackestone, and planktonic foraminiferal wackepackstone are the main microfacies that are affected by dissolutio
... Show MoreThe Early – Middle Miocene Ghar and Lower Fars sedimentary succession at the representative oil-well Nu-18 of the Nahr Umr oil field south Iraq; is taken by this study to investigate the sedimentological to reservoir rock facies buildups and related reservoir zonation; as first rock-typing attempt for the both formations. The sedimentological characterization of the Early Miocene Ghar formation is mainly comprised by successive buildups of sands-gravels and sandstones, whereas; the Middle Miocene Lower Fars formation is started by limestone, limestone-marly/marl anhydritic, upgraded into interbedded-series of marl and anhydrite facies, with less-common occurrences of thin-sandstone interlayers, terminated by marl-sandy-secti
... Show MoreThe Early-Middle Miocene succession in Iraq is represented by the Serikagni, Euphrates and Dhiban formations, which deposited during the Early Miocene. The Jeribe and Fatha successions were deposited during Middle Miocene age. This study includes microfacies analysis, depositional environments, sequence stratigraphy and basin development of Early – middle Miocene in Hamrin and Ajeel oil fields and Mansuriyha Gas Field. The study area includes four boreholes in three oil fields located in central Iraq: Hamrin (Hr-2) and Ajeel (Aj-13, and 19) oil feilds, and Mansuriyha (Ms-2) Gas Field. Five facies associations were distinguished within the studied fields: deep marine, slop, platform-margin, open marine, restricted interior platform
... Show MoreThe raw material soil of Al-Sowera factory quarry (quarry soil and mixture) used for building brick industry was tested mineralogically, geochemically and geotechnically. Mineral components of soil are characterized by Clay minerals (Palygoriskite and chlorite) and nonclay minerals like calcite, quratz, feldspar, gypsum and halite. The raw material is deficient in SiO2, Al2O3, K2O, Fe2O3 and MgO, while enriched in CaO. Loss on ignition and Na2O are in suitable level and appear to be concordant with the standard. Grain size analyses show that the decreasing sand and clay, and increasing silt ratio in both quarry soil and mixture caused decreasing in strength of brick during molding and after firing. The quarry soil is characterized by high p
... Show More