The geochemical study of the Oligocene-Miocene succession Anah, Euphrates, and Fatha formations, western Iraq, was carried out to discriminate their depositional environments. Different major and trace patterns were observed between these formations. The major elements (Ca, Mg, Fe, Mn, K, and Na) and trace elements (Li, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Cs, Ba, Hf, W, Pb, Th, and U) are a function of the setting of the depositional environments. The reefal facies have lower concentrations of MgO, Li, Cr, Co, Ni, Ga, Rb, Zr, and Ba than marine and lagoonal facies but have higher concentrations of CaO, V, and Sr than it. Whereas dolomitic limestone facies are enriched V, and U while depletion in Li, Cr, Ni, Ga, Rb, Sr, Zr, Ba, and Pb Conversely, the lagoonal facies are rich in clay minerals and associated trace elements Li, V, Cr, Co, Ni, Cu, Ga, Rb, Zr, Ba, and Pb.
This study deals with microfacies analysis, diagenetic facies, environmental interpretations related to sequence stratigraphy for Early – Middle Miocene in selected wells within Balad (Ba-X) and East Baghdad (EB-Z) oil fields.
Seven major microfacies were recognized in the successions of the study wells, these facies were used to recognize six facies association (depositional environments) within the study oil fields: deep marine, toe of slope, open marine, restricted interior platform, evaporitic interior platform and brackish interior platform. The facies associations interpreted were based on texture and obtainable fauna.
The Early - Middle Miocene succession was deposited during two depositional cycles as a t
... Show MoreBasal breccia unconformity layer between Anah and Euphrates Formations in Al-Haqlaniyah area, Western desert, include enormous sinkholes and cavities usually cause severe damages to any kind of engineering facilities built over it. Two-dimensional resistivity imaging has been applied to detect the depth and extent of the subsurface caves at five stations. The dipole-dipole array is chosen with an electrode spacing of 2 meters. 2D Dipole-dipole imaging inverse models show the resistivity values have a big variation between the anomalous background resistivity of rocks and part of cavities. These models showed shallow cavities at 1 to 3 m depth and others at 5to 6 m depth and extending to a depth of 23 m. The unconformity layer
... Show MoreIraqi western desert is characterized by a widespread karst phenomenon and caves. Euphrates formation (Lower Miocene) includes enormous sinkholes and cavities within carbonate rocks that usually cause severe damages to any kind of engineering facilities built over it. 3D resistivity imaging techniques were used in detecting this kind of cavities in complicated lithology. The 3D view was fulfilled by collating seven 2D imaging lines. The 2D imaging survey was carried out by Dipole-dipole array with (n) factor and electrode spacing (a) of 6 and 2m respectively. The horizontal slices of the 3D models give a good subsurface picture. There are many caves in all directions (x, y, z). They reveal many small caves near the surface. Thes
... Show MoreThe Late Maastrichtian–Danian phosphatic succession prevails as a deposit to the west of Rutbah region, Western Iraq. This is manifested through the lithostratigraphic sections of boreholes (K.H5\6 and K.H 5\8) drilled previously in the area. The succession is mainly composed of phosphate, shale, porcelanite, oyster and foraminiferal carbonate lithofacies belonging to Digma and Akashat formations. Three facies associations are distinguished during the study: the phosclast planktonic (FA1) that dominates the outer ramp, the phosclast foraminiferal (FA2) that dominates the mid ramp, and the quartz dolomitic phosclast (FA3) present in the inner ramp. These facies’ associations are differentiated into se
... Show MoreThe raw material soil of Al-Sowera factory quarry (quarry soil and mixture) used for building brick industry was tested mineralogically, geochemically and geotechnically. Mineral components of soil are characterized by Clay minerals (Palygoriskite and chlorite) and nonclay minerals like calcite, quratz, feldspar, gypsum and halite. The raw material is deficient in SiO2, Al2O3, K2O, Fe2O3 and MgO, while enriched in CaO. Loss on ignition and Na2O are in suitable level and appear to be concordant with the standard. Grain size analyses show that the decreasing sand and clay, and increasing silt ratio in both quarry soil and mixture caused decreasing in strength of brick during molding and after firing. The quarry soil is characterized by high p
... Show More