Preferred Language
Articles
/
joe-2559
Remediation of Groundwater Contaminated with Copper Ions by Waste Foundry Sand Permeable Barrier

The permeable reactive barrier (PRB) is one of the promising innovative in situ groundwater remediation technologies, in removing of copper from a contaminated shallow aquifer. The 1:1- mixture of waste foundry sand (WFS) and Kerbala’s sand (KS) was used for PRB. The WFS was represented the reactivity material while KS used to increase the permeability of PRB only. However, Fourier-transform infrared (FTIR) analysis proved that the carboxylic and alkyl halides groups are responsible for the sorption of copper onto WFS. Batch tests have been performed to characterize the equilibrium sorption properties of the (WFS+KS) mix in copper- containing aqueous
solutions. The sorption data for Cu+2 ions, obtained by batch experiments, have been subjected to the Langmuir and Freundlich isotherm models. The Langmuir model was chosen to describe the sorption of solute on the solid phase of PRB. COMSOL Multiphysics 3.5a based on finite element method was used for formulation the transport of copper ions in two- dimension physical model under equilibrium condition. Numerical and experimental results proved that the PRB plays a potential role in the restriction of the contaminant plume migration. A good agreement between the predicted and experimental results was recognized with mean error (ME) not exceeded 10 %.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Sep 24 2014
Journal Name
International Journal Of Environmental Science And Technology
Scopus (16)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Permeable Reactive Barrier of Coated Sand by Iron Oxide for Treatment of Groundwater Contaminated with Cadmium and Copper Ions

ان تصنيع رمال مطلية بأوكسيد الحديد من خلال ترسيب الجزيئات النانوية لذلك الاوكسيد على سطوح الرمال واستخدامها في الحاجز التفاعلي النفاذ لإزالة ايونات الكادميوم والنحاس من المياه الجوفية الملوثة الهدف الرئيسي للدراسة الحالية. تم توصيف بيانات الامتزاز نتيجة تفاعل المادة المازة مع المادة الممتزة قيد الدراسة بشكل جيد من خلال نموذج لانكمير والذي كان أفضل من نموذج فراندلش. لقد وجد ان اعلى قيم لقابلية الامتزاز با

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Sat Aug 01 2020
Journal Name
Journal Of Water Process Engineering
Humic acid coated sand as a novel sorbent in permeable reactive barrier for environmental remediation of groundwater polluted with copper and cadmium ions

Plantation of humic acid nanoparticles on the inert sand through simple impregnation to obtain the permeable reactive barrier (PRB) for treating of groundwater contaminated with copper and cadmium ions. The humic acid was extracted from sewage sludge which is byproduct of the wastewater treatment plant; so, this considers an application of sustainable development. Batch tests signified that the coated sand by humic acid (CSHA) had removal efficiencies exceeded 98 % at contact time, sorbent dosage, and initial pH of 1 h, 0.25 g/50 mL and 7, respectively for 10 mg/L initial concentration and 200 rpm agitation speed. Results proved that physicosorption was the predominant mechanism for metals-CSHA interaction because the sorption data followed

... Show More
Crossref (30)
Crossref
View Publication
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Using Activated Carbon developed from Iraqi Date Palm Seeds as Permeable Reactive Barrier for Remediation of Groundwater Contaminated with Copper

The possibility of using activated carbon developed from date palm seeds wastes as a permeable reactive barrier (PRB) to remove copper from polluted shallow groundwater was investigated. The activated carbon has been developed from date palm seeds by dehydrating methods using concentrated sulfuric acid. Batch tests were performed to characterize the equilibrium sorption properties of new activated carbon in copper-containing aqueous solutions, while the sandy soil (aquifer) was assumed to be inert. Under the studied conditions, the Langmuir isotherm model gives a better fit for the sorption data of copper by activated carbon than other models. At a pilot scale, One-dimensional column experiments were performed, and an integrated model ba

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Water Process Engineering
Scopus (204)
Crossref (171)
Scopus Clarivate Crossref
Publication Date
Wed Dec 28 2016
Journal Name
Environmental Technology
Scopus (18)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Wed Dec 25 2019
Journal Name
Separation Science And Technology
Scopus (18)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Wed Apr 01 2015
Journal Name
Journal Of Environmental Engineering
Scopus (20)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Mon Nov 28 2016
Journal Name
Separation Science And Technology
Scopus (23)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
The Remediation of Congo Red-Contaminated Groundwater by using a Permeable Reactive Barrier Through Modified Waterworks Sludge MgAl-LDH

This investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions.

... Show More
Crossref
View Publication Preview PDF