The present work considers an alternative solution for a complex configuration of rotor discs by applying Galerkin Method. The theoretical model consists of elastic shaft carrying number of discs and supported on number of journal bearings. The equation of motion was discretized to finite degree of freedom in terms of the system generalized coordinates. The various effects of the dynamical forces and moments arising from the bearing, discs and shaft were included. Rayleigh beam model is used for analyzing the shaft while the discs are considered rigid . The validity and convergence of the present analysis was carefully checked by comparing with the Finite Element solution. An example of rotor consists of three different size discs and supported by two journal bearing was considered for the numerical solution .The results shows good agreements between the two methods ,where the maximum error not exceeds 5%. The convergence test showed that using few modes (not more than 6) are sufficient for the accurate analysis. The forward and backward whirl was investigated experimentally .The experimental results of a two discs rotor ,show a reasonable agreement where the maximum error not exceeds 11%. The unbalance response, Cambpell diagram, orbit response were plotted .The effects of geometry, disc sizes , location and arrangement on the unbalance response and natural frequencies of three discs rotor were further investigated .
Piled raft is commonly used as foundation for high rise buildings. The design concept of piled raft foundation is to minimize the number of piles, and to utilize the entire bearing capacity. High axial stresses are therefore, concentrated at the region of connection between the piles and raft. Recently, an alternative technique is proposed to disconnect the piles from the raft in a so called unconnected piled raft (UCPR) foundation, in which a compacted soil layer (cushion) beneath the raft, is usually introduced. The piles of the new system are considered as reinforcement members for the subsoil rather than as structural members. In the current study, the behavior of unconnected piled rafts systems has been studie
... Show MoreIn this Paper, we proposed two new predictor corrector methods for solving Kepler's equation in hyperbolic case using quadrature formula which plays an important and significant rule in the evaluation of the integrals. The two procedures are developed that, in two or three iterations, solve the hyperbolic orbit equation in a very efficient manner, and to an accuracy that proves to be always better than 10-15. The solution is examined with and with grid size , using the first guesses hyperbolic eccentric anomaly is and , where is the eccentricity and is the hyperbolic mean anomaly.
Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems
... Show MoreIn this paper, we have employed a computation of three technique to reduce the computational complexity and bit rate for compressed image. These techniques are bit plane coding based on two absolute values, vector quantization VQ technique using Cache codebook and Weber's low condition. The experimental results show that the proposed techniques achieve reduce the storage size of bit plane and low computational complexity.
In this paper, we are mainly concerned with estimating cascade reliability model (2+1) based on inverted exponential distribution and comparing among the estimation methods that are used . The maximum likelihood estimator and uniformly minimum variance unbiased estimators are used to get of the strengths and the stress ;k=1,2,3 respectively then, by using the unbiased estimators, we propose Preliminary test single stage shrinkage (PTSSS) estimator when a prior knowledge is available for the scale parameter as initial value due past experiences . The Mean Squared Error [MSE] for the proposed estimator is derived to compare among the methods. Numerical results about conduct of the considered
... Show MoreIn this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
An Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .
This paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) method of four orders to solve oscillatory problems, which contains an oscillatory character in the solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK) method is a natural two-step method requiring fewer steps. The suggested method extends the fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This approach is intended to integrate problems with particular initial value problems (IVPs) using the set functions and for trigonometrically fitted. To improve the method's accuracy, the problem primary frequency is used. The novel method is more accurate than the conventional Runge-Ku
... Show MoreIn this paper, we studied the scheduling of jobs on a single machine. Each of n jobs is to be processed without interruption and becomes available for processing at time zero. The objective is to find a processing order of the jobs, minimizing the sum of maximum earliness and maximum tardiness. This problem is to minimize the earliness and tardiness values, so this model is equivalent to the just-in-time production system. Our lower bound depended on the decomposition of the problem into two subprograms. We presented a novel heuristic approach to find a near-optimal solution for the problem. This approach depends on finding efficient solutions for two problems. The first problem is minimizing total completi
... Show MoreTwo-dimensional unsteady mixed convection in a porous cavity with heated bottom wall is numerically studied in the present paper. The forced flow conditions are imposed by providing a hydrostatic pressure head at the inlet port that is located at the bottom of one of the vertical side walls and an open vent at the top of the other vertical side wall. The Darcy model is adopted to model the fluid flow in the porous medium and the combination effects of hydrostatic pressure head and the heat flux quantity parameters are carefully investigated. These governing parameters are varied over wide ranges and their effect on the heat transfer characteristics is studied in detail. It is found that the time required to reach a desired temperature at th
... Show More