Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a recognition rate of 97.75% in the presence of facial expression, lighting and pose variations. Results are compared with its wavelet-based counterpart where it obtained a recognition rate of 10.4%. The proposed multiwavenet demonstrated very good recognition rate in the presence of variations in facial expression, lighting and pose and outperformed its wavelet-based counterpart.
The present article delves into the examination of groundwater quality, based on WQI, for drinking purposes in Baghdad City. Further, for carrying out the investigation, the data was collected from the Ministry of Water Resources of Baghdad, which represents water samples drawn from 114 wells in Al-Karkh and Al-Rusafa sides of Baghdad city. With the aim of further determining WQI, four water parameters such as (i) pH, (ii) Chloride (Cl), (iii) Sulfate (SO4), and (iv) Total dissolved solids (TDS), were taken into consideration. According to the computed WQI, the distribution of the groundwater samples, with respect to their quality classes such as excellent, good, poor, very poor and unfit for human drinking purpose, was found to be
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More<p>In the mobile phone system, it is highly desirable to estimate the loss of the track not only to improve performance but also to achieve an accurate estimate of financial feasibility; the inaccurate estimate of track loss either leads to performance degradation or increased cost. Various models have been introduced to accurately estimate the path loss. One of these models is the Okomura / Hata model, which is recommended for estimating path loss in cellular systems that use micro cells. This system is suitable for use in a variety of environments. This study examines the comparison of path loss models for statistical analysis derived from experimental data collected in urban and suburban areas at frequencies of 150-1500 MHz
... Show MoreThe fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t
... Show MoreDeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detectio
... Show MoreRecent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T
... Show MoreThe easternmost extent of the Pharaoh Eagle Owl Bubo ascalaphus (Savigny, 1809)
distribution has remained enigmatic due to id entification problems and lack of owl research.
In Iraq, B. ascalaphus has been reported from only few localities in western Iraqi deserts;
while its occurrence in Iran has not been reported before this study. In 2017 2020, several
new records of B. ascala phus in western through southeastern Iraq were made and a new
distribution range in western Iran was confirmed. Furthermore, field identification,
interspecific relationships and conservation status of B. ascalaphus in Iraq and Iran were
comprehensively di scussed.
Background: Recurrent laryngeal nerve injury is
an important post-thyroidectomy complication for
which different modalities of treatment were
practiced to lower its incidence.
Objectives: To estimate the incidence of
recurrent laryngeal nerve injury in thyroid surgeries
in relation to type of surgery, type of gland diseases
& nerve identification.
Methods: Different types of goiters prepared
preoperatively by indirect laryngoscopy, operated
upon with different types of surgeries, postoperative
direct laryngoscopy by the anaesthetist were done
and indirect laryngoscopy done as needed.
Results: Of of 200 patients, the overall incidence
of recurrent laryngeal nerve injury was 9
Patients (4.5%
The novel heterocyclic organozinc compounds were prepared from the reaction of diazonum salt cytosine zinc chloride with thymol and vanilin as coupler components. The prepared compounds were characterized by elemental analysis and UV-Vis, FTIR and 1HMNR spectroscopic techniques. The biological activity was also studied for all prepared compounds.