Preferred Language
Articles
/
-xhaLJUBVTCNdQwC_ilZ
Braille Character Recognition System: Review
...Show More Authors

The Braille Recognition System is the process of capturing a Braille document image and turning its content into its equivalent natural language characters. The Braille Recognition System's cell transcription and Braille cell recognition are the two basic phases that follow one another. The Braille Recognition System is a technique for locating and recognizing a Braille document stored as an image, such as a jpeg, jpg, tiff, or gif image, and converting the text into a machine-readable format, such as a text file. BCR translates an image's pixel representation into its character representation. As workers at visually impaired schools and institutes, we profit from Braille recognition in a variety of ways. The Braille Recognition System contains many stages, including image acquisition, pre-processing of images, and character recognition. This review aims to examine the earlier studies on transcription and Braille cell recognition by other scholars and the comparative results and detection techniques among them. This review will look at previous work done by other researchers on Braille cell recognition and transcription, comparing previous works in this study, and will be useful and illuminating for Braille Recognition System researchers, especially newcomers.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Optical Character Recognition Using Active Contour Segmentation
...Show More Authors

Document analysis of images snapped by camera is a growing challenge. These photos are often poor-quality compound images, composed of various objects and text; this makes automatic analysis complicated. OCR is one of the image processing techniques which is used to perform automatic identification of texts. Existing image processing techniques need to manage many parameters in order to clearly recognize the text in such pictures. Segmentation is regarded one of these essential parameters. This paper discusses the accuracy of segmentation process and its effect over the recognition process. According to the proposed method, the images were firstly filtered using the wiener filter then the active contour algorithm could b

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Qin Seal Script Character Recognition with Fuzzy and Incomplete Information
...Show More Authors

The dependable and efficient identification of Qin seal script characters is pivotal in the discovery, preservation, and inheritance of the distinctive cultural values embodied by these artifacts. This paper uses image histograms of oriented gradients (HOG) features and an SVM model to discuss a character recognition model for identifying partial and blurred Qin seal script characters. The model achieves accurate recognition on a small, imbalanced dataset. Firstly, a dataset of Qin seal script image samples is established, and Gaussian filtering is employed to remove image noise. Subsequently, the gamma transformation algorithm adjusts the image brightness and enhances the contrast between font structures and image backgrounds. After a s

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of The College Of Education For Women
HandWritten Numerals Recognition System
...Show More Authors

  Recognition is one of the basic characteristics of human brain, and also for the living   creatures. It is possible to recognize images, persons, or patterns according to their characteristics. This recognition could be done using eyes or dedicated proposed methods. There are numerous applications for pattern recognition such as recognition of printed or handwritten letters, for example reading post addresses automatically and reading documents or check reading in bank.

      One of the challenges which faces researchers in character recognition field is the recognition of digits, which are written by hand. This paper describes a classification method for on-line handwrit

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 02 2022
Journal Name
Advances In Science And Technology Research Journal
Vein Biometric Recognition Methods and Systems: A Review
...Show More Authors

View Publication
Scopus (9)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Aug 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Emotion Recognition System Based on Hybrid Techniques
...Show More Authors

Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (12)
Scopus Crossref
Publication Date
Sun Sep 24 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Human Recognition Using Ear Features: A Review
...Show More Authors

Over the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time.  In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D

... Show More
View Publication
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Education For Pure Science- University Of Thi-qar
Dorsal Hand Vein Image Recognition: A Review
...Show More Authors

Subcutaneous vascularization has become a new solution for identification management over the past few years. Systems based on dorsal hand veins are particularly promising for high-security settings. The dorsal hand vein recognition system comprises the following steps: acquiring images from the database and preprocessing them, locating the region of interest, and extracting and recognizing information from the dorsal hand vein pattern. This paper reviewed several techniques for obtaining the dorsal hand vein area and identifying a person. Therefore, this study just provides a comprehensive review of existing previous theories. This model aims to offer the improvement in the accuracy rate of the system that was shown in previous studies and

... Show More
Publication Date
Wed Aug 01 2012
Journal Name
I-manger's Journal On Information Technology
A MODULE FOR ENHANCING RECOGNITION SYSTEM FOR QR CODE SCANNED IMAGE
...Show More Authors

A QR code is a type of barcode that can hold more information than the familiar kind scanned at checkouts around the world. The “QR” stands for “Quick Response”, a reference to the speed at which the large amounts of information they contain can be decoded by scanners. They are being widely used for advertising campaigns, linking to company websites, contest sign-up pages and online menus. In this paper, we propose an efficient module to extract QR code from background and solve problem of rotation in case of inaccurate image taken from mobile camera.

Publication Date
Tue Oct 01 2019
Journal Name
2019 Ieee 9th International Conference On System Engineering And Technology (icset)
A Digital Signature System Based on Real Time Face Recognition
...Show More Authors

This study proposed a biometric-based digital signature scheme proposed for facial recognition. The scheme is designed and built to verify the person’s identity during a registration process and retrieve their public and private keys stored in the database. The RSA algorithm has been used as asymmetric encryption method to encrypt hashes generated for digital documents. It uses the hash function (SHA-256) to generate digital signatures. In this study, local binary patterns histograms (LBPH) were used for facial recognition. The facial recognition method was evaluated on ORL faces retrieved from the database of Cambridge University. From the analysis, the LBPH algorithm achieved 97.5% accuracy; the real-time testing was done on thirty subj

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref