Preferred Language
Articles
/
alkej-155
Tuning PID Controller by Neural Network for Robot Manipulator Trajectory Tracking
...Show More Authors

Ziegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventional PID controller in the robot manipulator is replaced by NN self tuning PID controller so as to achieve trajectory tracking with minimum steady-state error and improving the dynamic behavior (overshoot). The simulation results showed that the proposed controller has strong self-adaptability over the conventional PID controller.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 01 2014
Journal Name
Al-khwarizmi Engineering Journal
Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PIaDb Controller
...Show More Authors

Nowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order  PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to  torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms Based Nonlinear PID Neural Trajectory Tracking Controller for the Differential Wheeled Mobile Robot Model
...Show More Authors

This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
A Cognitive Hybrid Tuning Control Algorithm Design for Nonlinear Path-Tracking Controller for Wheeled Mobile Robot
...Show More Authors

Abstract

This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Neuro-Self Tuning Adaptive Controller for Non-Linear Dynamical Systems
...Show More Authors

In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl

... Show More
View Publication Preview PDF
Publication Date
Sun May 12 2019
Journal Name
Al-khwarizmi Engineering Journal
Motion Control of Three Links Robot Manipulator (Open Chain) with Spherical Wrist
...Show More Authors

Robot manipulator is a multi-input multi-output system with high complex nonlinear dynamics, requiring an advanced controller in order to track a specific trajectory. In this work, forward and inverse kinematics are presented based on Denavit Hartenberg notation to convert the end effector planned path from cartesian space to joint space and vice versa where a cubic spline interpolation is used for trajectory segments to ensure the continuity in velocity and acceleration.  Also, the derived mathematical dynamic model is based on Eular Lagrange energy method to contain the effect of friction and disturbance torques beside the inertia and Coriolis effect. Two types of controller are applied ; the nonlinear computed torque control (CTC

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Design of Hybrid Neural Fuzzy Controller for Human Robotic Leg System
...Show More Authors

 In this paper, the human robotic leg which can be represented mathematically by single input-single output (SISO) nonlinear differential model with one degree of freedom, is analyzed and then a simple hybrid neural fuzzy controller is designed to improve the performance of this human robotic leg model. This controller consists from SISO fuzzy proportional derivative (FPD) controller with nine rules summing with single node neural integral derivative (NID) controller with nonlinear function. The Matlab simulation results for nonlinear robotic leg model with the suggested controller showed that the efficiency of this controller when compared with the results of the leg model that is controlled by PI+2D, PD+NID, and F

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
Deflection Analysis of an Elastic Single Link Robotic Manipulator
...Show More Authors

Abstract

Robotics manipulators with structural flexibility provide an attractive alternative to rigid robotics manipulators for many of the new and evolving applications in robotics. In certain applications their use is unavoidable. The increased complexity in modeling and control of such manipulators is offset by desirable performance enhancements in some respects. In this paperthe single- link flexible robotics manipulator was designed and implemented from Perspex and designed with 0.5 m length , 0.02 m width and with 0.004 m thickness with mass located at the tip. There are four subsystems; motion, control, accelerometer and gyro and a host computer subsystem. The work principle of single-link robotics manipul

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
A Nonlinear MIMO-PID Neural Controller Design for Vehicle Lateral Dynamics model based on Modified Elman Neural Network
...Show More Authors

This paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 21 2018
Journal Name
International Journal Of Control, Automation And Systems
Design and Stability Analysis of a Fractional Order State Feedback Controller for Trajectory Tracking of a Differential Drive Robot
...Show More Authors

View Publication
Scopus (18)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of a Kinematic Neural Controller for Mobile Robots based on Enhanced Hybrid Firefly-Artificial Bee Colony Algorithm
...Show More Authors

The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then  proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme

... Show More
View Publication Preview PDF