In this work, we construct complete (K, n)-arcs in the projective plane over Galois field GF (11), where 12 2 ≤ ≤ n ,by using geometrical method (using the union of some maximum(k,2)- Arcs , we found (12,2)-arc, (19,3)-arc , (29,4)-arc, (38,5)-arc , (47,6)-arc, (58,7)-arc, (68,6)-arc, (81,9)-arc, (96,10)-arc, (109,11)-arc, (133,12)-arc, all of them are complete arc in PG(2, 11) over GF(11).
In projective plane over a finite field q F , a conic is the unique complete
(q 1) arc and any arcs on a conic are incomplete arc of degree less than q 1.
These arcs correspond to sets in the projective line over the same field. In this paper,
The number of inequivalent incomplete k arcs; k 5,6, ,12, on the conic in
PG(2,23) and stabilizer group types are found. Also, the projective line
PG(1,23) has been splitting into two 12-sets and partitioned into six disjoint
tetrads.
The purpose of this article is to partition PG(3,11) into orbits. These orbits are studied from the view of caps using the subgroups of PGL(4,11) which are determined by nontrivial positive divisors of the order of PG(3,11). The τ_i-distribution and c_i-distribution are also founded for each cap.
In this work, we construct projectively distinct (k,3)-arcs in the projective plane PG(2,9) by applying a geometrical method. The cubic curves have been been constructed by using the general equation of the cubic. We found that there are complete (13,3)-arcs, complete (15,3)-arcs and we found that the only (16,3)-arcs lead to maximum completeness
This research aims to give a splitting structure of the projective line over the finite field of order twenty-seven that can be found depending on the factors of the line order. Also, the line was partitioned by orbits using the companion matrix. Finally, we showed the number of projectively inequivalent -arcs on the conic through the standard frame of the plane PG(1,27)
The purpose of this paper is to find an arc of degree five in 31 ,29),(2, =qqPG , with stabilizer group of type dihedral group of degree five 5 D and arcs of degree six and ten with stabilizer groups of type alternating group of degree five 5 A , then study the effect of 5 D and 5A on the points of projective plane. Also, find a pentastigm which has collinear diagonal points.
MDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) is MDS code with independents property of any two columns of its generator matrix. In this paper, elementary methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new incomplete PG-MDS codes have been used over . Also, two complete PG-MDS codes over of length and 28 have been found.
The main aim of this paper is to introduce the relationship between the topic of coding theory and the projective plane of order three. The maximum value of size of code over finite field of order three and an incidence matrix with the parameters, (length of code), (minimum distance of code) and (error-correcting of code ) have been constructed. Some examples and theorems have been given.
The main aims of this research is to find the stabilizer groups of a cubic curves over a finite field of order , studying the properties of their groups and then constructing the arcs of degree which are embedding in a cubic curves of even size which are considering as the arcs of degree . Also drawing all these arcs.
Plane cubics curves may be classified up to isomorphism or projective equivalence. In this paper, the inequivalent elliptic cubic curves which are non-singular plane cubic curves have been classified projectively over the finite field of order nineteen, and determined if they are complete or incomplete as arcs of degree three. Also, the maximum size of a complete elliptic curve that can be constructed from each incomplete elliptic curve are given.