In this work, we construct complete (K, n)-arcs in the projective plane over Galois field GF (11), where 12 2 ≤ ≤ n ,by using geometrical method (using the union of some maximum(k,2)- Arcs , we found (12,2)-arc, (19,3)-arc , (29,4)-arc, (38,5)-arc , (47,6)-arc, (58,7)-arc, (68,6)-arc, (81,9)-arc, (96,10)-arc, (109,11)-arc, (133,12)-arc, all of them are complete arc in PG(2, 11) over GF(11).
A (k,n)-arc is a set of k points of PG(2,q) for some n, but not n + 1 of them, are collinear. A (k,n)-arc is complete if it is not contained in a (k + 1,n)-arc. In this paper we construct complete (kn,n)-arcs in PG(2,5), n = 2,3,4,5, by geometric method, with the related blocking sets and projective codes.
The article describes a certain computation method of -arcs to construct the number of distinct -arcs in for . In this method, a new approach employed to compute the number of -arcs and the number of distinct arcs respectively. This approach is based on choosing the number of inequivalent classes } of -secant distributions that is the number of 4-secant, 3-secant, 2-secant, 1-secant and 0-secant in each process. The maximum size of -arc that has been constructed by this method is . The new method is a new tool to deal with the programming difficulties that sometimes may lead to programming problems represented by the increasing number of arcs. It is essential to reduce the established number of -arcs in each cons
... Show MoreThis research is concerned with the study of the projective plane over a finite field . The main purpose is finding partitions of the projective line PG( ) and the projective plane PG( ) , in addition to embedding PG(1, ) into PG( ) and PG( ) into PG( ). Clearly, the orbits of PG( ) are found, along with the cross-ratio for each orbit. As for PG( ), 13 partitions were found on PG( ) each partition being classified in terms of the degree of its arc, length, its own code, as well as its error correcting. The last main aim is to classify the group actions on PG( ).
The purpose of this paper is to give the definition of projective 3-space PG(3,q) over Galois field GF(q), q = pm for some prime number p and some integer m.
Also, the definition of the plane in PG(3,q) is given and state the principle of duality.
Moreover some theorems in PG(3,q) are proved.
Our research is related to the projective line over the finite field, in this paper, the main purpose is to classify the sets of size K on the projective line PG (1,31), where K = 3,…,7 the number of inequivalent K-set with stabilizer group by using the GAP Program is computed.
In this paper, the packing problem for complete ( 4)-arcs in is partially solved. The minimum and the maximum sizes of complete ( 4)-arcs in are obtained. The idea that has been used to do this classification is based on using the algorithm introduced in Section 3 in this paper. Also, this paper establishes the connection between the projective geometry in terms of a complete ( , 4)-arc in and the algebraic characteristics of a plane quartic curve over the field represented by the number of its rational points and inflexion points. In addition, some sizes of complete ( 6)-arcs in the projective plane of order thirteen are established, namely for = 53, 54, 55, 56.
The goal of this paper is to construct an arcs of size five and six with stabilizer groups of type alternating group of degree five and degree six . Also construct an arc of degree five and size with its stabilizer group, and then study the effect of and on the points of projective plane. Also, find a pentastigm which has the points on a line. Partitions on projective plane of order sixteen into subplanes and arcs have been described.
A (b,t)-blocking set B in PG(2,q) is set of b points such that every line of PG(2,q) intersects B in at least t points and there is a line intersecting B in exactly t points. In this paper we construct a minimal (b,t)-blocking sets, t = 1,2,3,4,5 in PG(2,5) by using conics to obtain complete arcs and projective codes related with them.
In this work, new kinds of blocking sets in a projective plane over Galois field PG(2,q) can be obtained. These kinds are called the complete blocking set and maximum blocking set. Some results can be obtained about them.
The main goal of this paper is to show that a
-arc in
and
is subset of a twisted cubic, that is, a normal rational curve. The maximum size of an arc in a projective space or equivalently the maximum length of a maximum distance separable linear code are classified. It is then shown that this maximum is
for all dimensions up to
.