Preferred Language
Articles
/
jih-3467
Enhanced Support Vector Machine Methods Using Stochastic Gradient Descent and Its Application to Heart Disease Dataset
...Show More Authors

Support Vector Machines (SVMs) are supervised learning models used to examine data sets in order to classify or predict dependent variables. SVM is typically used for classification by determining the best hyperplane between two classes. However, working with huge datasets can lead to a number of problems, including time-consuming and inefficient solutions. This research updates the SVM by employing a stochastic gradient descent method. The new approach, the extended stochastic gradient descent SVM (ESGD-SVM), was tested on two simulation datasets. The proposed method was compared with other classification approaches such as logistic regression, naive model, K Nearest Neighbors and Random Forest. The results show that the ESGD-SVM has a very high accuracy and is quite robust. ESGD-SVM is used to analyze the heart disease dataset downloaded from Harvard Dataverse. The entire analysis was performed using the program R version 4.3.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Apr 01 2020
Journal Name
Medico-legal Update
Knowledge and protective health behaviors concerning risk factors for coronary heart disease among baghdad university students
...Show More Authors

Scopus (11)
Scopus
Publication Date
Fri Apr 26 2024
Journal Name
Mathematical Modelling Of Engineering Problems
Solving Tri-criteria: Total Completion Time, Total Earliness, and Maximum Tardiness Using Exact and Heuristic Methods on Single-Machine Scheduling Problems
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Petroleum Science And Technology
Lithofacies and electrofacies models for Mishrif Formation in West Qurna oilfield, Southern Iraq by deterministic and stochastic methods (comparison and analyzing)
...Show More Authors

View Publication
Scopus (14)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Indian Journal Of Forensic Medicine & Toxicology
Prothrombotic changes in patients with end-stage renal disease and its relation to thrombotic cardiovascular complication
...Show More Authors

There is a great risk of cardiovascular disease (CVD) and vascular thrombosis in patients with End-Stage Renal Disease (ESRD). These patients exhibit numerous abnormalities in coagulation, fibrinolytic, inhibitory protein abnormalities in multiple levels. The study aimed to assess hypercoagulable changes by measuring the levels of antithrombin, plasma fibrinogen and FXII activity in patients with ESRD, and to find their correlation with Hemoglobin (Hb) level, WBC count, reticulocyte percentage and platelet count. This study was conducted at Al-Hayat center, Al Karama Teaching Hospital on 50 ESRD patients aged < 60 years of both genders. In addition, 20 apparently healthy individuals were included as a control group. The mean Hb level, total

... Show More
Scopus
Publication Date
Mon Feb 28 2022
Journal Name
Journal Of Educational And Psychological Researches
Social Support and Its Relationship to Psychological Rigidity in a Sample of Breast Cancer Patients In the Ramallah and Al-Bireh Governorate
...Show More Authors

This study aims to identify the impact of social support on breast cancer patients’ psychological rigidity using a sample in Ramallah and al-Bireh. A descriptive correlative approach was adopted to fulfill the goals of the study and a questionnaire consisted of two criteria: social support and psychological rigidity, which was adopted as a tool for data collection for the study. In order to achieve the goals of the study, the researcher selected a convenient sample that consisted of 123 female breast cancer patients in Ramallah and al-Bireh. This sample represented 50% of the original patient population. The study showed that the average estimated percentage of social support and psychological rigidity for women with breast cancer, in

... Show More
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
European Journal Of General Dentistry
Assessment of Serum Interleukin-1β and Interleukin-6 Levels in Patients with Chronic Periodontitis and Coronary Heart Disease
...Show More Authors
Abstract<p> Objective The aim of this study was to assess whether serum cytokine levels correlate with clinical periodontal parameters in health or disease.</p><p> Materials and Methods Male subjects (40–60 years) with CP (n = 30), CP + CHD (n = 30), and healthy controls (n = 20) had plaque index (PLI), gingival index (GI), bleeding on probing, probing pocket depth (PPD), and clinical attachment level (CAL) evaluated. Serum IL-1β and IL-6 levels were quantified using enzyme-linked immunosorbent assay.</p><p> Results PLI, GI, PPD, and CAL were significantly higher in patients with CP + CHD compared to those with CP. Serum levels of IL-1β and IL-6 were also si</p> ... Show More
View Publication
Scopus (10)
Crossref (10)
Scopus Crossref
Publication Date
Mon Jul 03 2017
Journal Name
University Of Sheffield
The interaction of Porphyromonas gingivalis with host epithelial cells and its relevance to periodontal disease
...Show More Authors

Periodontitis is one of the most prevalent bacterial diseases affecting man with up to 90% of the global population affected. Its severe form can lead to the tooth loss in 10-15% of the population worldwide. The disease is caused by a dysbiosis of the local microbiota and one organism that contributes to this alteration in the bacterial population is Prophyromonas gingivalis. This organism possesses a range of virulence factors that appear to contribute to its growth and survival at a periodontal site amongst which is its ability to invade oral epithelial cells. Such an invasion strategy provides a means of evasion of host defence mechanisms, persistence at a site and the opportunity for dissemination to other sites in the mouth. However, p

... Show More
View Publication
Publication Date
Fri Feb 28 2025
Journal Name
Energies
Synergizing Machine Learning and Physical Models for Enhanced Gas Production Forecasting: A Comparative Study of Short- and Long-Term Feasibility
...Show More Authors

Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref