Support Vector Machines (SVMs) are supervised learning models used to examine data sets in order to classify or predict dependent variables. SVM is typically used for classification by determining the best hyperplane between two classes. However, working with huge datasets can lead to a number of problems, including time-consuming and inefficient solutions. This research updates the SVM by employing a stochastic gradient descent method. The new approach, the extended stochastic gradient descent SVM (ESGD-SVM), was tested on two simulation datasets. The proposed method was compared with other classification approaches such as logistic regression, naive model, K Nearest Neighbors and Random Forest. The results show that the ESGD-SVM has a very high accuracy and is quite robust. ESGD-SVM is used to analyze the heart disease dataset downloaded from Harvard Dataverse. The entire analysis was performed using the program R version 4.3.
This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreWhen optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat
... Show MoreBackground: The association between oral microbial infection and systemic disease is not a new concept. A major confounding issue is that oral infections often are only one of the many important factors that can influence systemic diseases .Objective: This study was conducted to evaluate the periodontal health status of patients with acquired coronary heart disease. Type of the study: Cross-sectional study.Methods: The study group consisted of 200 patients with an age range (35-70) years, having coronary heart disease .This study group were compared to a control group of non-coronary heart disease (200 individuals ) matching with age and gender. The oral parameters were examined including the periodontal conditions, assessment of periodo
... Show MoreAs material flow cost accounting technology focuses on the most efficient use of resources like energy and materials while minimizing negative environmental effects, the research aims to show how this technology can be applied to promote green productivity and its reflection in attaining sustainable development. In addition to studying sustainability, which helps to reduce environmental impacts and increase green productivity, the research aims to demonstrate the knowledge bases for accounting for the costs of material flow and green productivity. It also studies the technology of accounting for the costs of material flow in achieving sustainable development and the role of green productivity in achieving sustainable development. According
... Show MoreVariable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreBotnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper
Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show MoreBackground: Congenital heart disease is one of the most common developmental anomalies in children. These patients commonly have poor oral health that increase caries risk. Dental management of children with congenital heart disease requires special attention, because of their heightened susceptibility to infectious endocarditis. The aims of this study were to assess the severity of dental caries of primary and permanent teeth and treatment needs in relation to nutritional indicator (Body Mass Index) among children with congenital heart disease. Materials and Methods: In this case-control study, case group consisted of 399 patients aged between 6-12 years old with congenital heart disease were examined for dental status in Ibn Al-Bitar spec
... Show More