Support Vector Machines (SVMs) are supervised learning models used to examine data sets in order to classify or predict dependent variables. SVM is typically used for classification by determining the best hyperplane between two classes. However, working with huge datasets can lead to a number of problems, including time-consuming and inefficient solutions. This research updates the SVM by employing a stochastic gradient descent method. The new approach, the extended stochastic gradient descent SVM (ESGD-SVM), was tested on two simulation datasets. The proposed method was compared with other classification approaches such as logistic regression, naive model, K Nearest Neighbors and Random Forest. The results show that the ESGD-SVM has a very high accuracy and is quite robust. ESGD-SVM is used to analyze the heart disease dataset downloaded from Harvard Dataverse. The entire analysis was performed using the program R version 4.3.
After Zadeh introduced the concept of z-number scientists in various fields have shown keen interest in applying this concept in various applications. In applications of z-numbers, to compare two z-numbers, a ranking procedure is essential. While a few ranking functions have been already proposed in the literature there is a need to evolve some more good ranking functions. In this paper, a novel ranking function for z-numbers is proposed- "the Momentum Ranking Function"(MRF). Also, game theoretic problems where the payoff matrix elements are z-numbers are considered and the application of the momentum ranking function in such problems is demonstrated.
he aim of this study is to get a plant extracts to use it as molluscicides to control the snail vector of Schistosomiasis andfinely control the disease. Laboratory study was performed to compare the molluscicidal activity of leaves and stems extractsof Cucumis melo against Bulinus truncatus snail. The snail B. truncatus was exposed to a serial concentrations of leaves andstems extracts (4000ppm, 5000ppm) in this work. Different effects of the extracts to the snail B. truncatus were recorded.These effects includes death, escaping and imbalance of snail behavior. 96hr-LD50 values of leaves extracts were calculatedfor the doses 4000 and 5000ppm as (76 and 37%) respectively while for stems were (105 and 47%) respectively. We found thatthe snail
... Show MoreIn this paper we investigate the use of two types of local search methods (LSM), the Simulated Annealing (SA) and Particle Swarm Optimization (PSO), to solve the problems ( ) and . The results of the two LSMs are compared with the Branch and Bound method and good heuristic methods. This work shows the good performance of SA and PSO compared with the exact and heuristic methods in terms of best solutions and CPU time.
Background: Poly cystic ovary syndrome is a common disorder in women of reproductive age, it is associated with disturbance of reproductive, endocrine and metabolic functions. The pathophysiology of PCOS appears to be multifactorial and polygenic. Leptin seems to play an important role in pathophysiology of PCOS especially in women with BMI ≥25kg/m2.
J Fac Med Baghdad 2014; Vol.56, No .2 Received Sept .2013 Accepted April. 2014 |
Objectives: To assess leptin
... Show MoreBackground: Poly cystic ovary syndrome is a common disorder in women of reproductive age, it is associated with disturbance of reproductive, endocrine and metabolic functions. The pathophysiology of PCOS appears to be multifactorial and polygenic. Leptin seems to play an important role in pathophysiology of PCOS especially in women with BMI ≥25kg/m2. Objectives: To assess leptin level in both PCOS and healthy women and explore the relation to their body weight and body mass index. Patient and Methods: A total of 120 women were enrolled in this study, 60 women (50%) had PCOS (study group) and the reminder 60 women (50%) were healthy women and considered as control group. BMI was calculated first. Both groups were further sub
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreDiagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad
... Show More