The study of fixed points on the maps fulfilling certain contraction requirements has several applications and has been the focus of numerous research endeavors. On the other hand, as an extension of the idea of the best approximation, the best proximity point (ƁƤƤ) emerges. The best approximation theorem ensures the existence of an approximate solution; the best proximity point theorem is considered for addressing the problem in order to arrive at an optimum approximate solution. This paper introduces a new kind of proximal contraction mapping and establishes the best proximity point theorem for such mapping in fuzzy normed space ( space). In the beginning, the concept of the best proximity point was introduced. The concept of proximal contractive mapping in the context of fuzzy normed space is then presented. Following that, the best proximity point theory for this kind of mapping is established. In addition, we provide an example application of the results
A new de-blurring technique was proposed in order to reduced or remove the blur in the images. The proposed filter was designed from the Lagrange interpolation calculation with adjusted by fuzzy rules and supported by wavelet decomposing technique. The proposed Wavelet Lagrange Fuzzy filter gives good results for fully and partially blurring region in images.
Gas compressibility factor or z-factor plays an important role in many engineering applications related to oil and gas exploration and production, such as gas production, gas metering, pipeline design, estimation of gas initially in place (GIIP), and ultimate recovery (UR) of gas from a reservoir. There are many z-factor correlations which are either derived from Equation of State or empirically based on certain observation through regression analysis. However, the results of the z-factor obtained from different correlations have high level of variance for the same gas sample under the same pressure and temperature. It is quite challenging to determine the most accurate correlation which provides accurate estimate for a range of pressures,
... Show MoreIt is shown that if a subset of a topological space (χ, τ) is δ-semi.closed, then it is semi.closed. By use this fact, we introduce the concept regularity of a topological space (χ, τ) via δ-semi.open sets. Many properties and results were investigated and studied. In addition we study some maps that preserve the δ-semi.regularity of spaces.
The elements of theater formation that fall within the spatial experience of the scenography of the show, which the directors work in in the imaginary theater, are important and have an aesthetic, intellectual and cognitive dimension, working to highlight reality in an aesthetic image surrounding space and space. And its relationship to the distinct, multiple and variable spaces above the stage, to produce theatrical signals and endless meanings through the possibility of infinite reconfiguration of the theater's space and its public and private space through the distribution of a group of blocks within the scenic image.
I dealt with in the first chapter (the methodological framework), which includes the research problem identified
The main idea of this paper is to define other types of a fuzzy local function and study the advantages and differences between them in addition to discussing some definitions of finding new fuzzy topologies. Also in this research, a new type of fuzzy closure has been defined, where the relation between the new type and different types of fuzzy local function has been studied
This work aims to optimize surface roughness, wall angle deviation, and average wall thickness as output responses of ALuminium-1050 alloy cone formed by the single point incremental sheet metal forming process. The experiments are accomplished based on the use of a mixed level Taguchi experimental design with an L18 orthogonal array. Six levels of step depth, three levels of tool diameter, feed rate, and tool rotational speed have been considered as input process parameters. The analyses of variance (ANOVA) have been used to investigate the significance of parameters and the effect of their levels for minimum surface roughness, minimum wall angle deviation, and maximum average wall thickness. The results indicate that step depth and tool r
... Show More In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.
Sliding Mode Controller (SMC) is a simple method and powerful technique to design a robust controller for nonlinear systems. It is an effective tool with acceptable performance. The major drawback is a classical Sliding Mode controller suffers from the chattering phenomenon which causes undesirable zigzag motion along the sliding surface. To overcome the snag of this classical approach, many methods were proposed and implemented. In this work, a Fuzzy controller was added to classical Sliding Mode controller in order to reduce the impact chattering problem. The new structure is called Sliding Mode Fuzzy controller (SMFC) which will also improve the properties and performance of the classical Sliding Mode control
... Show MoreComputer theoretical study has been carried out on the design of five electrode immersion electrostatic lens used in electron gun application. The finite element method (FEM) is used in the solution of the Poisson's equation fro determine axial potential distribution, the electron trajectory under Zero magnification condition . The optical properties : focal length ,spherical and chromatic aberrations are calculated,From studying the properties of the designed electron gun. we have good futures for these electron gun where are abeam current 4*10-4A can be supplied by using cathode tip of radius 100 nm.
Zadah in [1] introduced the notion of a fuzzy subset A of a nonempty set S as a mapping from S into [0,1], Liu in [2] introduced the concept of a fuzzy ring, Martines [3] introduced the notion of a fuzzy ideal of a fuzzy ring. A non zero proper ideal I of a ring R is called an essential ideal if I  J  (0), for any non zero ideal J of R, [4]. Inaam in [5] fuzzified this concept to essential fuzzy ideal of fuzzy ring and gave its basic properties. Nada in [6] introduced and studied notion of semiessential ideal in a ring R, where a non zero i
... Show More